## ◂Math Worksheets and Study Guides Eighth Grade. Linear equations

### The resources above correspond to the standards listed below:

#### Alaska Content and Performance Standards

AK.8.EE. Expressions and Equations
Understand the connections between proportional relationships, lines, and linear equations.
8.EE.5. Graph linear equations such as y = mx + b, interpreting m as the slope or rate of change of the graph and b as the y-intercept or starting value. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
8.EE.6. Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b.
AK.8.F. Functions
Define, evaluate, and compare functions.
8.F.3. Interpret the equation y = mx + b as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function A = s^2 giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.
Use functions to model relationships between quantities.
8.F.4. Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.