What's New: Math Worksheets and Study Guides


Shapes Kindergarten Math
Money Kindergarten Math
Shapes Kindergarten Math
Patterns & Sorting Kindergarten Math
Shapes Kindergarten Math
Ordinals Kindergarten Math
Shapes Kindergarten Math

Rhode Island Standards for Eighth Grade Math

RI.M:CCR:8. NECAP - Grade Level Expectation: Communication, Connections, and Representations.

M:CCR:8:1. Students will communicate their understanding of mathematics and be able to:

M:CCR:8:1.2. Present, share, explain, and justify thinking with others and build upon the ideas of others to solve problems.
M:CCR:8:1.3. Use mathematical symbols and notation.
M:CCR:8:1.4. Formulate questions, conjectures, definitions, and generalizations about data, information, and problem situations.

M:CCR:8:3. Students will recognize, explore, and develop mathematical connections and be able to:

M:CCR:8:3.1. Connect new mathematical ideas to those already studied and build upon them.

RI.M:DSP:8. NECAP - Grade Level Expectation: Data, Statistics, and Probability.

M:DSP:8:1. Interprets a given representation (line graphs, scatter plots, histograms, or box-and-whisker plots) to analyze the data to formulate or justify conclusions, to make predictions, or to solve problems.

M:DSP:8:2. Analyzes patterns, trends, or distributions in data in a variety of contexts by determining or using measures of central tendency (mean, median, or mode), dispersion (range or variation), outliers, quartile values, or estimated line of best fit to analyze situations, or to solve problems; and evaluates the sample from which the statistics were developed (bias, random, or non-random).

M:DSP:8:3. Organizes and displays data using scatter plots to answer questions related to the data, to analyze the data to formulate or justify conclusions, to make predictions, or to solve problems; or identifies representations or elements of representations that best display a given set of data or situation, consistent with the representations required in M(DSP)-8-1.

M:DSP:8:4. Uses counting techniques to solve problems in context involving combinations or permutations using a variety of strategies (e.g., organized lists, tables, tree diagrams, models, Fundamental Counting Principle, or others).

M:DSP:8:5. For a probability event in which the sample space may or may not contain equally likely outcomes, determines the experimental or theoretical probability of an event in a problem-solving situation; and predicts the theoretical probability of an event and tests the prediction through experiments and simulations; and compares and contrasts theoretical and experimental probabilities.

M:DSP:8:6. In response to a teacher or student generated question or hypothesis decides the most effective method (e.g., survey, observation, experimentation) to collect the data (numerical or categorical) necessary to answer the question; collects, organizes, and appropriately displays the data; analyzes the data to draw conclusions about the question or hypothesis being tested while considering the limitations that could affect interpretations; and when appropriate makes predictions; and asks new questions and makes connections to real world situations.

RI.M:F&A:8. NECAP - Grade Level Expectation: Functions and Algebra.

M:F&A:8:1. Identifies and extends to specific cases a variety of patterns (linear and nonlinear) represented in models, tables, sequences, graphs, or in problem situations; and generalizes a linear relationship (non-recursive explicit equation); generalizes a linear relationship to find a specific case; generalizes a nonlinear relationship using words or symbols; or generalizes a common nonlinear relationship to find a specific case.

M:F&A:8:2. Demonstrates conceptual understanding of linear relationships (y = kx; y = mx + b) as a constant rate of change by solving problems involving the relationship between slope and rate of change; informally and formally determining slopes and intercepts represented in graphs, tables, or problem situations; or describing the meaning of slope and intercept in context; and distinguishes between linear relationships (constant rates of change) and nonlinear relationships (varying rates of change) represented in tables, graphs, equations, or problem situations; or describes how change in the value of one variable relates to change in the value of a second variable in problem situations with constant and varying rates of change.

M:F&A:8:3. Demonstrates conceptual understanding of algebraic expressions by evaluating and simplifying algebraic expressions (including those with square roots, whole number exponents, or rational numbers); or by evaluating an expression within an equation.

M:F&A:8:4. Demonstrates conceptual understanding of equality by showing equivalence between two expressions (expressions consistent with the parameters of the left- and right-hand sides of the equations being solved at this grade level) using models or different representations of the expressions, solving formulas for a variable requiring one transformation; by solving multi-step linear equations with integer coefficients; by showing that two expressions are or are not equivalent by applying commutative, associative, or distributive properties, order of operations, or substitution; and by informally solving problems involving systems of linear equations in a context.

RI.M:G&M:8. NECAP - Grade Level Expectation: Geometry and Measurement.

M:G&M:8:2. Applies the Pythagorean Theorem to find a missing side of a right triangle, or in problem solving situations.

M:G&M:8:5. Applies concepts of similarity to determine the impact of scaling on the volume or surface area of three-dimensional figures when linear dimensions are multiplied by a constant factor; to determine the length of sides of similar triangles, or to solve problems involving growth and rate.

M:G&M:8:6. Demonstrates conceptual understanding of surface area or volume by solving problems involving surface area and volume of rectangular prisms, triangular prisms, cylinders, pyramids, or cones. Expresses all measures using appropriate units.

RI.M:N&O:8. NECAP - Grade Level Expectation: Number and Operation.

M:N&O:8:1. Demonstrates conceptual understanding of rational numbers with respect to absolute values, perfect square and cube roots, and percents as a way of describing change (percent increase and decrease) using explanations, models, or other representations.

M:N&O:8:2. Demonstrates understanding of the relative magnitude of numbers by ordering or comparing rational numbers, common irrational numbers, numbers with whole number or fractional bases and whole number exponents, square roots, absolute values, integers, or numbers represented in scientific notation using number lines or equality and inequality symbols.

M:N&O:8:4. Accurately solves problems involving proportional reasoning (percent increase or decrease, interest rates, markups, or rates); multiplication or division of integers; and squares, cubes, and taking square or cube roots.

M:N&O:8:6. Uses a variety of mental computation strategies to solve problems (e.g., using compatible numbers, applying properties of operations, using mental imagery, using patterns) and to determine the reasonableness of answers; and mentally calculates benchmark perfect squares and related square roots; determines the part of a number using benchmark percents and related fractions.

M:N&O:8:8. Applies properties of numbers (odd, even, remainders, divisibility, and prime factorization) and field properties (commutative, associative, identity , distributive, inverses) to solve problems and to simplify computations, and demonstrates conceptual understanding of field properties as they apply to subsets of real numbers when addition and multiplication are not defined in the traditional ways (e.g., If a triangle b = a + b - 1, is triangle a commutative operation?)

RI.M:PRP:8. NECAP - Grade Level Expectation: Problem Solving, Reasoning, and Proof.

M:PRP:8:1. Students will use problem-solving strategies to investigate and understand increasingly complex mathematical content and be able to:

M:PRP:8:1.2. Determine, collect and organize the relevant information needed to solve real-world problems.
M:PRP:8:1.3. Apply integrated problem-solving strategies to solve problems in the physical, natural, and social sciences and in pure mathematics.
M:PRP:8:1.5. Reflect on solutions and the problem-solving process for a given situation and refine strategies as needed.

M:PRP:8:2. Students will use mathematical reasoning and proof and be able to:

M:PRP:8:2.1. Draw logical conclusions and make generalizations using deductive and inductive reasoning.
M:PRP:8:2.2. Formulate, test, and justify mathematical conjectures and arguments.
M:PRP:8:2.3. Construct and determine the validity of a mathematical argument or a solution.

NewPath Learning resources are fully aligned to US Education Standards. Select a standard below to view correlations to your selected resource:

21st Century Skills FrameworkAlabama Common Core StandardsAlabama StandardsAlaska StandardsArizona Common Core StandardsArizona StandardsArkansas Common Core StandardsArkansas StandardsCalifornia Common Core StandardsCalifornia StandardsColorado Common Core StandardsColorado StandardsCommon Core State StandardsConnecticut Common Core StandardsConnecticut StandardsDelaware Common Core StandardsDelaware StandardsFlorida Common Core StandardsFlorida Standards (NGSSS)Georgia Common Core StandardsGeorgia StandardsHawaii Common Core StandardsHawaii StandardsIdaho Common Core StandardsIdaho StandardsIllinois Common Core StandardsIllinois StandardsIndiana Common Core StandardsIndiana StandardsIowa Common Core StandardsIowa Core StandardsKansas Common Core StandardsKansas StandardsKentucky Common Core StandardsKentucky StandardsLouisiana Common Core StandardsLouisiana StandardsMaine Common Core StandardsMaine StandardsMaryland Common Core StandardsMaryland StandardsMassachusetts Common Core StandardsMassachusetts StandardsMichigan Common Core StandardsMichigan StandardsMinnesota StandardsMississippi Common Core StandardsMississippi StandardsMissouri Common Core StandardsMissouri StandardsMontana Common Core StandardsMontana StandardsNational STEM StandardsNebraska StandardsNevada Common Core StandardsNevada StandardsNew Hampshire Common Core StandardsNew Hampshire StandardsNew Jersey Common Core StandardsNew Jersey StandardsNew Mexico Common Core StandardsNew Mexico StandardsNew York Common Core StandardsNew York StandardsNorth Carolina Common Core StandardsNorth Carolina StandardsNorth Dakota Common Core StandardsNorth Dakota StandardsOhio Common Core StandardsOhio StandardsOklahoma Common Core StandardsOklahoma StandardsOregon Common Core StandardsOregon StandardsPennsylvania Common Core StandardsPennsylvania StandardsRhode Island Common Core StandardsRhode Island StandardsSouth Carolina Common Core StandardsSouth Carolina StandardsSouth Dakota Common Core StandardsSouth Dakota StandardsTennessee Common Core StandardsTennessee StandardsTexas Assessments Standards (STAAR)Texas TEKS StandardsU.S. National StandardsUtah Common Core StandardsUtah StandardsVermont Common Core StandardsVermont StandardsVirgin Islands Common Core StandardsVirginia StandardsWashington Common Core StandardsWashington DC Common Core StandardsWashington DC StandardsWashington StandardsWest Virginia Common Core StandardsWest Virginia StandardsWisconsin Common Core StandardsWisconsin StandardsWyoming Common Core StandardsWyoming Standards