Plasma is one of the four fundamental states of matter, along with solid, liquid, and gas. It is often referred to as the fourth state of matter. Plasma is a highly ionized gas, composed of positively charged ions and free electrons, resulting in an overall electrically neutral medium. This unique state of matter is not commonly found on Earth, but it makes up a significant portion of the observable universe, including stars, solarwind, and certain types of lighting.
Characteristics of Plasma:
Ionization:Atoms in a plasma state have lost or gained electrons, resulting in the presence of free ions and electrons.
Self-Sustaining: Under certain conditions, such as high temperatures and pressures, plasma can sustain itself through a process called "self-ionization."
Occurrence of Plasma:
Plasma is commonly found in nature in the form of:
Stars: The sun and other stars are primarily composed of plasma, where nuclear fusion reactions occur due to the high temperatures and pressures.
Lightning: Lightning bolts are a form of plasma discharge, caused by the rapid heating and ionization of the surrounding air.
Applications of Plasma:
Plasma has a wide range of practical applications in various fields, including:
Fusion Energy: Researchers are exploring the use of plasma in nuclear fusion reactors as a potential source of clean and abundant energy.
Material Processing: Plasma can be used for surface cleaning, etching, and coating of materials in industries such as semiconductor manufacturing and aerospace.
When studying plasma in chemistry, it's important to explore concepts such as:
Ionization: Understanding the process by which atoms gain or lose electrons to form ions in a plasma state.
Plasma Parameters: Examining the temperature, density, and behavior of particles in plasma using theoretical and experimental methods.
Plasma Chemistry: Investigating the chemical reactions and kinetics that occur within plasmas, including plasma-assisted combustion and pollutant removal.
By delving into the study of plasma, students can gain insights into the unique properties and potential applications of this fascinating state of matter.
Energy - A. Energy is involved in all physical and chemical processes. It is conserved, and can be transformed from one form to another and into work. At the atomic and nuclear levels energy is not continuous but exists in discrete amounts. Energy and mass are related through Einstein's equation E=mc 2 . B. The properties of atomic nuclei are responsible for energy-related phenomena such as radioactivity, fission and fusion. C. Changes in entropy and energy that accompany chemical reactions influence reaction paths. Chemical reactions result in the release or absorption of energy. D. The theory of electromagnetism explains that electricity and magnetism are closely related. Electric charges are the source of electric fields. Moving charges generate magnetic fields. E. Waves are the propagation of a disturbance. They transport energy and momentum but do not transport matter.
Relate temperature to the average molecular kinetic energy.