UV-Visible Spectroscopy: UV-Visible spectroscopy involves the measurement of the absorption of ultraviolet and visible light by organic and inorganic compounds.
Infrared Spectroscopy:Infrared spectroscopy is used to study the vibrational and rotational modes of molecules, providing information about functional groups and chemical structure.
Nuclear MagneticResonance (NMR) Spectroscopy: NMR spectroscopy is used to study the magnetic properties of atomic nuclei, providing information about the local environment of atoms in a molecule.
Learn the basic principles of atomic and molecular spectroscopy, including the interaction of light with matter and the quantization of energy levels.
Practice interpreting spectra and understanding how different types of spectroscopy provide information about molecular structure and chemical properties.
Study the instrumentation and techniques used in spectroscopy, such as spectrometers, detectors, and sample preparation methods.
Review and solve problems related to spectral analysis, such as identifying functional groups in infrared spectra or analyzing NMR spectra to deduce molecular structures.
By mastering the principles and applications of spectroscopy, you will develop a deeper understanding of the behavior of matter and gain valuable analytical skills for scientific research and chemical analysis.
Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.
Energy
Students who demonstrate understanding can:
Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as either motions of particles or energy stored in fields.