Translation in mathematics refers to the process of moving a shape or an object from one position to another without changing its size, shape, or orientation. This movement can be done in any direction - left, right, up, or down - and by a specified distance.
Key Concepts
When dealing with translations, it's important to understand the following key concepts:
Vector: A vector is a quantity that has both magnitude and direction. In the context of translations, a vector represents the direction and distance of the movement of the shape.
Coordinate Notation: Translations can be described using coordinate notation, where the original coordinates of the points of the shape are shifted according to the specified vector.
Describing Translations: Translations can be described using words, vectors, or coordinate notation.
Example
Consider a triangle with vertices at points A(1, 2), B(4, 3), and C(2, 5). If we want to translate this triangle 3 units to the right and 2 units down, we can describe this translation as a vector v = (3, -2). Using coordinate notation, the new coordinates of the vertices after the translation would be:
A'(1 + 3, 2 - 2) = A'(4, 0)
B'(4 + 3, 3 - 2) = B'(7, 1)
C'(2 + 3, 5 - 2) = C'(5, 3)
Study Guide
Here's a study guide to help you understand and practice translations:
Explore real-world applications of translations, such as in geography or computer graphics.
Review and master the properties of translations, such as the fact that the size and shape of the object remain unchanged.
By mastering the concept of translation and practicing related problems, you'll be well-prepared to handle any translation-based questions in mathematics.
Apply and extend previous understandings of numbers to the system of rational numbers.
Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates. [6-NS6]
Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes. [6-NS6b]
Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane. [6-NS6c]
Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate. [6-NS8]