Translation in mathematics refers to the process of moving a shape or an object from one position to another without changing its size, shape, or orientation. This movement can be done in any direction - left, right, up, or down - and by a specified distance.
Key Concepts
When dealing with translations, it's important to understand the following key concepts:
Vector: A vector is a quantity that has both magnitude and direction. In the context of translations, a vector represents the direction and distance of the movement of the shape.
Coordinate Notation: Translations can be described using coordinate notation, where the original coordinates of the points of the shape are shifted according to the specified vector.
Describing Translations: Translations can be described using words, vectors, or coordinate notation.
Example
Consider a triangle with vertices at points A(1, 2), B(4, 3), and C(2, 5). If we want to translate this triangle 3 units to the right and 2 units down, we can describe this translation as a vector v = (3, -2). Using coordinate notation, the new coordinates of the vertices after the translation would be:
A'(1 + 3, 2 - 2) = A'(4, 0)
B'(4 + 3, 3 - 2) = B'(7, 1)
C'(2 + 3, 5 - 2) = C'(5, 3)
Study Guide
Here's a study guide to help you understand and practice translations:
Explore real-world applications of translations, such as in geography or computer graphics.
Review and master the properties of translations, such as the fact that the size and shape of the object remain unchanged.
By mastering the concept of translation and practicing related problems, you'll be well-prepared to handle any translation-based questions in mathematics.
Use visualization, spatial reasoning, and geometric modeling to solve problems.
Use geometric models to represent and explain numerical and algebraic relationships.
Measurement (NCTM)
Apply appropriate techniques, tools, and formulas to determine measurements.
Select and apply techniques and tools to accurately find length, area, volume, and angle measures to appropriate levels of precision.
Develop strategies to determine the surface area and volume of selected prisms, pyramids, and cylinders.
Connections to the Grade 6 Focal Points (NCTM)
Measurement and Geometry: Problems that involve areas and volumes, calling on students to find areas or volumes from lengths or to find lengths from volumes or areas and lengths, are especially appropriate. These problems extend the students' work in grade 5 on area and volume and provide a context for applying new work with equations.