Addition is a basic arithmetic operation that involves combining two or more numbers to find their total sum. When you add numbers together, you are finding the total quantity or value of the numbers combined.

To add two numbers together, you simply combine their values. For example:

3 + 5 = 8

This means that if you have 3 of something and you add 5 more, you will have a total of 8.

When adding multi-digit numbers, you may need to carry over a digit to the next place value. For example:

24

+ 19

-----
43

In this example, when adding the ones place (4 + 9), the sum is 13. Since 13 is a two-digit number, you write down the 3 in the ones place and carry over the 1 to the tens place.

- Practice basic addition with single-digit numbers.
- Practice adding multi-digit numbers, paying attention to carrying over when necessary.
- Use manipulatives or visual aids to help understand the concept of addition.
- Memorize addition facts to build fluency in mental math.
- Apply addition to real-life situations, such as adding up prices at the store or calculating quantities of items.

Understanding addition is essential for building a strong foundation in mathematics. Practice regularly and seek help when needed to improve your addition skills.

Study GuideSimilarity and scale Worksheet/Answer key

Similarity and scale Worksheet/Answer key

Similarity and scale Worksheet/Answer key

Similarity and scale Worksheet/Answer keyUsing Similar Polygons Worksheet/Answer keySimilar Polygons Worksheet/Answer keyUsing Similar Polygons Worksheet/Answer keySimilar Polygons

Number and Operations (NCTM)

Understand numbers, ways of representing numbers, relationships among numbers, and number systems.

Understand and use ratios and proportions to represent quantitative relationships.

Compute fluently and make reasonable estimates.

Develop, analyze, and explain methods for solving problems involving proportions, such as scaling and finding equivalent ratios.

Geometry (NCTM)

Analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships.

Understand relationships among the angles, side lengths, perimeters, areas, and volumes of similar objects.

Create and critique inductive and deductive arguments concerning geometric ideas and relationships, such as congruence, similarity, and the Pythagorean relationship.

Apply transformations and use symmetry to analyze mathematical situations.

Describe sizes, positions, and orientations of shapes under informal transformations such as flips, turns, slides, and scaling.

Measurement (NCTM)

Apply appropriate techniques, tools, and formulas to determine measurements.

Solve problems involving scale factors, using ratio and proportion.

Grade 8 Curriculum Focal Points (NCTM)

Geometry and Measurement: Analyzing two- and three-dimensional space and figures by using distance and angle

Students use fundamental facts about distance and angles to describe and analyze figures and situations in two- and three-dimensional space and to solve problems, including those with multiple steps. They prove that particular configurations of lines give rise to similar triangles because of the congruent angles created when a transversal cuts parallel lines. Students apply this reasoning about similar triangles to solve a variety of problems, including those that ask them to find heights and distances. They use facts about the angles that are created when a transversal cuts parallel lines to explain why the sum of the measures of the angles in a triangle is 180 degrees, and they apply this fact about triangles to find unknown measures of angles. Students explain why the Pythagorean Theorem is valid by using a variety of methods - for example, by decomposing a square in two different ways. They apply the Pythagorean Theorem to find distances between points in the Cartesian coordinate plane to measure lengths and analyze polygons and polyhedra.