**What is Mass?**

Mass is a measure of the amount of matter in an object. It is a fundamental property of an object that determines the object's resistance to acceleration when a force is applied.

**Units of Mass**

The standard unit of mass in the metric system is the kilogram (kg). In the imperial system, mass is commonly measured in pounds (lb) or ounces (oz).

**Measuring Mass**

Mass can be measured using a balance scale or a digital scale. The mass of an object is usually determined by comparing it to known masses or by using a calibrated scale.

**Calculating Mass**

The mass of an object can be calculated using the formula:

Mass = Density × Volume

**Importance of Mass**

Mass plays a crucial role in various scientific fields, including physics, chemistry, and engineering. Understanding mass helps in determining an object's inertia, gravitational force, and energy requirements for motion.

**Key Concepts to Remember**

- Mass is a measure of the amount of matter in an object.
- The standard unit of mass in the metric system is the kilogram (kg).
- Mass can be measured using a balance scale or a digital scale.
- The mass of an object can be calculated using the formula: Mass = Density × Volume

Study GuideSimilarity and scale Worksheet/Answer key

Similarity and scale Worksheet/Answer key

Similarity and scale Worksheet/Answer key

Similarity and scale Worksheet/Answer keyUsing Similar Polygons Worksheet/Answer keySimilar Polygons Worksheet/Answer keyUsing Similar Polygons Worksheet/Answer keySimilar Polygons

Number and Operations (NCTM)

Understand numbers, ways of representing numbers, relationships among numbers, and number systems.

Understand and use ratios and proportions to represent quantitative relationships.

Compute fluently and make reasonable estimates.

Develop, analyze, and explain methods for solving problems involving proportions, such as scaling and finding equivalent ratios.

Geometry (NCTM)

Analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships.

Understand relationships among the angles, side lengths, perimeters, areas, and volumes of similar objects.

Create and critique inductive and deductive arguments concerning geometric ideas and relationships, such as congruence, similarity, and the Pythagorean relationship.

Apply transformations and use symmetry to analyze mathematical situations.

Describe sizes, positions, and orientations of shapes under informal transformations such as flips, turns, slides, and scaling.

Measurement (NCTM)

Apply appropriate techniques, tools, and formulas to determine measurements.

Solve problems involving scale factors, using ratio and proportion.

Grade 8 Curriculum Focal Points (NCTM)

Geometry and Measurement: Analyzing two- and three-dimensional space and figures by using distance and angle

Students use fundamental facts about distance and angles to describe and analyze figures and situations in two- and three-dimensional space and to solve problems, including those with multiple steps. They prove that particular configurations of lines give rise to similar triangles because of the congruent angles created when a transversal cuts parallel lines. Students apply this reasoning about similar triangles to solve a variety of problems, including those that ask them to find heights and distances. They use facts about the angles that are created when a transversal cuts parallel lines to explain why the sum of the measures of the angles in a triangle is 180 degrees, and they apply this fact about triangles to find unknown measures of angles. Students explain why the Pythagorean Theorem is valid by using a variety of methods - for example, by decomposing a square in two different ways. They apply the Pythagorean Theorem to find distances between points in the Cartesian coordinate plane to measure lengths and analyze polygons and polyhedra.