Printable North Carolina Standard Course of Study High School Biology Worksheets and Answer Keys, Study Guides and Vocabulary Sets.
Biologists study the structure, function, growth, origin, evolution and distribution of living organisms. There are generally considered to be at least nine major fields of biology which include biochemistry, botany, cellular biology, ecology, evolutionary biology, genetics, molecular biology, physiology and zoology.
Food Chains and Food WebsBiological dynamics of Earth. Relationships within a community: predation, competition, parasitism, mutualism, commensalism. Construct a food chain. Construct a trophic-level pyramid (energy level). Compare and contrast food webs and food chains. Read more...iWorksheets: 3Vocabulary Sets: 2 Introduction to animalsClassification - the process of grouping items together according to their
similarities. Kingdom - large category included in scientific classification system and the taxonomic category above phylum; scientists recognize six kingdoms: animals, plants, fungi, protista, eubacteria, and archaebacteria. Vertebrates - animals that have a backbone; five main groups of vertebrates: fish, birds, reptiles, amphibians and mammals. Read more...iWorksheets: 4Vocabulary Sets: 3 Vertebrates IVertebrates - animals that have a backbone. The word comes from vertebrae, the bones that make up the spine. Five main groups of vertebrates: fish, birds, reptiles, amphibians and mammals. A few tens of thousands of species have been identified. Read more...iWorksheets: 3Vocabulary Sets: 3 InvertebratesInvertebrates are animals that don't have a backbone. More than 90 percent of all living animal species are invertebrates. Familiar examples of invertebrates include arthropods, mollusks, annelid, and cnidarians. Like vertebrates, most invertebrates reproduce at least partly through sexual reproduction. Read more...iWorksheets: 6Vocabulary Sets: 3 Microorganisms IHyphae - threadlike filaments of branching cells that make up the bodies of multicellular fungi. Gymnosperm - group of vascular plants that develop seeds without a protective outer covering; they do not produce flowers or fruit. Flagellum - a tail-like structure found on bacteria and select protists which helps them to move. Volvox - a freshwater, chlorophyll-containing green alga, that occurs in ball-shaped colonies. Read more...iWorksheets: 4Vocabulary Sets: 5 Microorganisms IITaxonomy is the classification of all known living organisms that shows
relationships between different organisms. Pseudopod is false feet; temporary fingerlike projections a one-celled organism, such as an amoeba, uses to move. Protozoa - single-celled, animal-like protist that has the ability to move. Mycelium - a mass of fungal hyphae that absorbs nutrients. Read more...iWorksheets: 3Vocabulary Sets: 5 Pond MicrolifeFood vacuole - a small sac-like structure in which captured food is digested. Micronucleus - the smaller of the two nuclei present in some protozoa that contains the genetic material and controls cell reproduction. Paramecium - a single-celled protozoan covered with hair-like cilia, found in many freshwater habitats. Read more...iWorksheets: 3Vocabulary Sets: 4 The science of biologyThe processes of science include the formulation of scientifically investigable questions, construction of investigations into those questions, the collection of appropriate data, the evaluation of the meaning of those data, and the communication of this evaluation. Scientific knowledge is based on observation and inference; it is important to recognize that these are very different things. Read more...iWorksheets: 3 Chromosomes, Genes and DNAChromosomes are made up of DNA (deoxyribonucleic acid), the hereditary material in humans and most of other organisms. Specific sections of the DNA are called genes. Each gene provides the cell with different information. Each chromosome is made up of many genes. There are about about 100000 genes found on human chromosomes. A gene is made up of a particular sequence of DNA bases. This sequence acts as a code for a protein. The production of different proteins determines the trait (inherited characteristic) of an organism. Read more...iWorksheets: 3Vocabulary Sets: 3 Genetics and heredity IIBy whom were first described the principles of dominance, segregation, and independent assortment? What did Gregor Mendel discover using the results of his experiments with plant crosses? Match each Genetics and heredity term to its definition like Splindle fibers, Telophase, Trait, Transcription, Mutation, Phenotype. Read more...iWorksheets: 3Vocabulary Sets: 7 The Study of HeredityHeredity refers to the genetic heritage passed down by our biological parents when certain traits are passed from the parents to the children. Traits are characteristics such as height, hair color etc... Heredity is passed through genes in the Deoxyribonucleic acid (DNA) molecule. DNA is a molecule that contains the biological instructions that make each species unique. Read more...iWorksheets: 2Vocabulary Sets: 3 Introduction to plantsWhich woody plant structure possesses vascular tissue lenticels? From which part of the seed will the leaves and upper portions of the stem of a plant develop? Match each plants term to its definition like Lactic acid fermentation, ovule, gymnosperm, guard cells, phloem, vascular tissue, root cap. Read more...iWorksheets: 3Vocabulary Sets: 5 Plant structure and functionPlants are living organisms made up of cells. Plants need sunlight and water to live and grow healthy. Many plants, but not all plants, produce flowers, which make fruit and seeds in order for the plant to reproduce. There are two different types of root systems: A fibrous root system has many roots that grow in many different directions. Plants that have a taproot system have only one large main root growing from the plant’s stem. Read more...iWorksheets: 4Vocabulary Sets: 2 Introduction to cellsAll living things are made from one or more cells. The nucleus is the control center of the cell. It houses the nucleolus and genetic material (chromatin) used for directing cell functions. Nuclear pores allow materials to pass in and out of the nucleus. The nuclear envelope is a membrane which surrounds and protects the nucleus. The nucleolus produces ribosomes. Ribosomes are factories that produce proteins needed by the cell. Lysosomes contain chemicals (enzymes) that break down and recycle harmful materials. Read more...iWorksheets: 3Vocabulary Sets: 4 MeiosisMeiosis is a process where a single cell divides twice to produce four cells containing half the original amount of genetic information. These cells are our sex cells – sperm in males, eggs in females. Prophase I - a phase of meiosis during which chromosomes thicken and homologous pairs of chromosomes move together. Metaphase I - a phase of meiosis I during which homologous pairs of chromosomes line up in the center of the cell. Read more...iWorksheets: 3Vocabulary Sets: 3 MitosisStructures and functions of living organisms: Cells, Tissues, Organs, and Organ Systems. Differentiate between the processes of mitosis and meiosis. Describe different cell parts and their functions. Read more...iWorksheets: 2Vocabulary Sets: 3 NC.PSc. Physical Science
Forces and Motion
PSc.1.1. Understand motion in terms of speed, velocity, acceleration and momentum.
PSc.1.1.1. Explain motion in terms of frame of reference, distance, and displacement.
PSc.1.1.2. Compare speed, velocity, acceleration and momentum using investigations, graphing, scalar quantities and vector quantities.
Psc.1.2. Understand the relationship between forces and motion.
PSc.1.2.1. Explain how gravitational force affects the weight of an object and the velocity of an object in freefall.
PSc.1.2.2. Classify frictional forces into one of four types: static, sliding, rolling, and fluid.
PSc.1.2.3. Explain forces using Newton's Three Laws of Motion.
Matter: Properties and Change
PSc.2.1. Understand types, properties, and structure of matter.
PSc.2.1.1. Classify matter as: homogeneous or heterogeneous; pure substance or mixture; element or compound; metals, nonmetals or metalloids; solution, colloid or suspension.
PSc.2.1.2. Explain the phases of matter and the physical changes that matter undergoes.
States of MatterThere are Four states of matter observable in everyday life: solid, liquid, gas, and plasma. Matter in the solid state has a fixed volume and shape, with component particles (atoms, molecules or ions) close together and fixed into place. Matter in the liquid state has a fixed volume, but has a variable shape that adapts to fit its container. Its particles are close together but move freely. Matter in the gaseous state has both variable volume and shape, adapting both to fit its container. Its particles are neither close together nor fixed in place. Matter in the plasma state has variable volume and shape. Read more...iWorksheets :3 PSc.2.1.3. Compare physical and chemical properties of various types of matter.
States of MatterThere are Four states of matter observable in everyday life: solid, liquid, gas, and plasma. Matter in the solid state has a fixed volume and shape, with component particles (atoms, molecules or ions) close together and fixed into place. Matter in the liquid state has a fixed volume, but has a variable shape that adapts to fit its container. Its particles are close together but move freely. Matter in the gaseous state has both variable volume and shape, adapting both to fit its container. Its particles are neither close together nor fixed in place. Matter in the plasma state has variable volume and shape. Read more...iWorksheets :3 PSc.2.2. Understand chemical bonding and chemical interactions.
PSc.2.2.1. Infer valence electrons, oxidation number, and reactivity of an element based on its location in the Periodic Table.
PSc.2.2.3. Predict chemical formulas and names for simple compounds based on knowledge of bond formation and naming conventions.
PSc.2.2.4. Exemplify the Law of Conservation of mass by balancing chemical equations.
PSc.2.3. Understand the role of the nucleus in radiation and radioactivity.
PSc.2.3.1. Compare nuclear reactions including; alpha decay, beta decay and gamma decay; nuclear fusion and nuclear fission.
Energy: Conservation and Transfer
PSc.3.1. Understand the types of energy, conservation of energy and energy transfer.
PSc.3.1.1. Explain thermal energy and its transfer.
Matter and EnergyMatter is any substance that has mass and takes up space. Energy can be transferred as heat or as work. Energy is a property that matter has. Read more...iWorksheets :3 PSc.3.1.3. Explain work in terms of the relationship among the applied force to an object, the resulting displacement of the object and the energy transferred to an object.
PSc.3.1.4. Explain the relationship among work, power and simple machines both qualitatively and quantitatively.
PSc.3.2. Understand the nature of waves.
PSc.3.2.1. Explain the relationships among wave frequency, wave period, wave velocity and wavelength through calculation and investigation.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.2.2. Compare waves (mechanical, electromagnetic, and surface) using their characteristics.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.2.3. Classify waves as transverse or compressional (longitudinal).
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.2.4. Illustrate the wave interactions of reflection, refraction, diffraction, and interference.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.3. Understand electricity and magnetism and their relationship.
PSc.3.3.1. Summarize static and current electricity.
PSc.3.3.2. Explain simple series and parallel DC circuits in terms of Ohm's Law.
PSc.3.3.3. Explain how current is affected by changes in composition, length, temperature, and diameter of wire.
PSc.3.3.4. Explain magnetism in terms of domains, interactions of poles, and magnetic fields.
PSc.3.3.5. Explain the practical applications of magnetism.
NC.Bio. Biology
Structure and Functions of Living Organisms
Bio.1.1. Understand the relationship between the structures and functions of cells and their organelles.
Bio.1.1.1. Summarize the structure and function of organelles in eukaryotic cells (including: the nucleus, plasma membrane, cell wall, mitochondria, vacuoles, chloroplasts, and ribosomes) and ways that these organelles interact with each other to perform the function of the cell.
Cell structure and functionMatch each Cell structure term to its definition like DNA, Lysosomes, Mitochondrion, Lipids, Endoplasmic reticulum, Osmosis and many more. What are the organelles that provide the energy to sperm cells? What hemoglobin, insulin, albumin and maltase are composed of? These animal and plant cell worksheets recommended for students of High School Biology. Read more...iWorksheets :3Vocabulary :5 Bio.1.2. Analyze the cell as a living system.
Bio.1.2.1. Explain how homeostasis is maintained in the cell and within an organism in various environments (including: temperature and pH).
Cell processesFreeCellular metabolism is the set of chemical reactions that occur in living organisms in order to maintain life. Living organisms are unique in that they can extract energy from their environments and use it to carry out activities such as growth, development, and reproduction. Read more...iWorksheets :3Vocabulary :7 Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7 Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7 Bio.1.2.2. Analyze how cells grow and reproduce in terms of interphase, mitosis and cytokinesis.
Cell ReproductionThe process where one cell forms two identical daughter cells. Mitosis is how somatic—or non-reproductive cells—divide. Meiosis is cell division that creates sex cells, like female egg cells or male sperm cells. Meiosis has two cycles of cell division, called Meiosis I and Meiosis II. Read more...iWorksheets :4 Ecosystems
Bio.2.1. Analyze the interdependence of living organisms within their environments.
Bio.2.1.1. Analyze the flow of energy and cycling of matter (water, carbon, nitrogen and oxygen) through ecosystems relating the significance of each to maintaining the health and sustainability of an ecosystem.
Ecology IMatch each ecology term to its definition like Energy pyramid, Decomposer, Carnivore, Ecosystem, Owl pellet, Omnivore and many more. Which human activity would be more likely to have a positive/negative impact on the environment? Which factor determines the type of terrestrial plants that grow in an area? Which energy transfer is least likely to be found in nature? Read more...iWorksheets :4Vocabulary :2 Ecology IIMatch each Ecology term to its definition like Trophic level, Food web, Consumer, Energy, Herbivore and more. Which component is not recycled in an ecosystem? Why Vultures, which are classified as scavengers, are an important part of an ecosystem? Which characteristic does creeping vine that is parasitic on other plants shares with all other heterotrophs? Read more...iWorksheets :3Vocabulary :2 Bio.2.1.2. Analyze the survival and reproductive success of organisms in terms of behavioral, structural, and reproductive adaptations.
Evolution and classificationCategorize organisms using a hierarchical classification system based on similarities and differences. Evolutionary theory is a scientific explanation for the unity and diversity of life. Analyze the effects of evolutionary mechanisms, including genetic drift, gene flow, mutation and recombination. Read more...iWorksheets :3 Bio.2.1.3. Explain various ways organisms interact with each other (including predation, competition, parasitism, mutualism) and with their environments resulting in stability within ecosystems.
Evolution and classificationCategorize organisms using a hierarchical classification system based on similarities and differences. Evolutionary theory is a scientific explanation for the unity and diversity of life. Analyze the effects of evolutionary mechanisms, including genetic drift, gene flow, mutation and recombination. Read more...iWorksheets :3 Evolution & Genetics
Bio.3.1. Explain how traits are determined by the structure and function of DNA.
Bio.3.1.1. Explain the double-stranded, complementary nature of DNA as related to its function in the cell.
Cell ReproductionThe process where one cell forms two identical daughter cells. Mitosis is how somatic—or non-reproductive cells—divide. Meiosis is cell division that creates sex cells, like female egg cells or male sperm cells. Meiosis has two cycles of cell division, called Meiosis I and Meiosis II. Read more...iWorksheets :4 Bio.3.1.2. Explain how DNA and RNA code for proteins and determine traits.
Cell ReproductionThe process where one cell forms two identical daughter cells. Mitosis is how somatic—or non-reproductive cells—divide. Meiosis is cell division that creates sex cells, like female egg cells or male sperm cells. Meiosis has two cycles of cell division, called Meiosis I and Meiosis II. Read more...iWorksheets :4 Nucleic acids and protein synthesisThe term nucleic acid is the name for DNA and RNA. They are composed of nucleotides. DNA molecules are double-stranded and RNA molecules are single-stranded. To initiate the process of information transfer, one strand of the double-stranded DNA chain serves as a template for the synthesis of a single strand of RNA that is complementary to the DNA strand. Read more...iWorksheets :4Vocabulary :3 Bio.3.1.3. Explain how mutations in DNA that result from interactions with the environment (i.e. radiation and chemicals) or new combinations in existing genes lead to changes in function and phenotype.
Nucleic acids and protein synthesisThe term nucleic acid is the name for DNA and RNA. They are composed of nucleotides. DNA molecules are double-stranded and RNA molecules are single-stranded. To initiate the process of information transfer, one strand of the double-stranded DNA chain serves as a template for the synthesis of a single strand of RNA that is complementary to the DNA strand. Read more...iWorksheets :4Vocabulary :3 Bio.3.2. Understand how the environment, and/or the interaction of alleles, influences the expression of genetic traits.
Bio.3.2.1. Explain the role of meiosis in sexual reproduction and genetic variation.
Cell ReproductionThe process where one cell forms two identical daughter cells. Mitosis is how somatic—or non-reproductive cells—divide. Meiosis is cell division that creates sex cells, like female egg cells or male sperm cells. Meiosis has two cycles of cell division, called Meiosis I and Meiosis II. Read more...iWorksheets :4 Bio.3.2.2. Predict offspring ratios based on a variety of inheritance patterns (including: dominance, co-dominance, incomplete dominance, multiple alleles, and sex-linked traits).
Genetics and heredity IHow many chromosomes would normally be contained in a gamete? Match each Genetics and heredity term to its definition like Genetic code, Crossing-over, Fertilization, Codon, Dominant allele, Ribosomes, Sex cells, Punnett square, Prophase II. Read more...iWorksheets :4Vocabulary :7 Bio.3.2.3. Explain how the environment can influence the expression of genetic traits.
Genetics and heredity IHow many chromosomes would normally be contained in a gamete? Match each Genetics and heredity term to its definition like Genetic code, Crossing-over, Fertilization, Codon, Dominant allele, Ribosomes, Sex cells, Punnett square, Prophase II. Read more...iWorksheets :4Vocabulary :7 Bio.3.3. Understand the application of DNA technology.
Bio.3.3.3. Evaluate some of the ethical issues surrounding the use of DNA technology (including: cloning, genetically modified organisms, stem cell research, and Human Genome Project).
DNA technology/genetic engineeringThis topic is about biology and Forensic science. Students will learn to identify the structure and function of DNA, RNA and protein. They will also learn to describe the importance of generic information to forensics. Read more...iWorksheets :4Vocabulary :3 Bio.3.4. Explain the theory of evolution by natural selection as a mechanism for how species change over time.
Bio.3.4.2. Explain how natural selection influences the changes in species over time.
Evolution and classificationCategorize organisms using a hierarchical classification system based on similarities and differences. Evolutionary theory is a scientific explanation for the unity and diversity of life. Analyze the effects of evolutionary mechanisms, including genetic drift, gene flow, mutation and recombination. Read more...iWorksheets :3 Bio.3.4.3. Explain how various disease agents (bacteria, viruses, chemicals) can influence natural selection.
Evolution and classificationCategorize organisms using a hierarchical classification system based on similarities and differences. Evolutionary theory is a scientific explanation for the unity and diversity of life. Analyze the effects of evolutionary mechanisms, including genetic drift, gene flow, mutation and recombination. Read more...iWorksheets :3 Bio.3.5. Analyze how classification systems are developed based upon speciation.
Bio.3.5.1. Explain the historical development and changing nature of classification systems.
Evolution and classificationCategorize organisms using a hierarchical classification system based on similarities and differences. Evolutionary theory is a scientific explanation for the unity and diversity of life. Analyze the effects of evolutionary mechanisms, including genetic drift, gene flow, mutation and recombination. Read more...iWorksheets :3 Bio.3.5.2. Analyze the classification of organisms according to their evolutionary relationships (including: dichotomous keys and phylogenetic trees).
Evolution and classificationCategorize organisms using a hierarchical classification system based on similarities and differences. Evolutionary theory is a scientific explanation for the unity and diversity of life. Analyze the effects of evolutionary mechanisms, including genetic drift, gene flow, mutation and recombination. Read more...iWorksheets :3 Molecular Biology
Bio.4.1. Understand how biological molecules are essential to the survival of living organisms
Bio.4.1.2. Summarize the relationship among DNA, proteins and amino acids in carrying out the work of cells and how this is similar in all organisms.
Cell ReproductionThe process where one cell forms two identical daughter cells. Mitosis is how somatic—or non-reproductive cells—divide. Meiosis is cell division that creates sex cells, like female egg cells or male sperm cells. Meiosis has two cycles of cell division, called Meiosis I and Meiosis II. Read more...iWorksheets :4 Nucleic acids and protein synthesisThe term nucleic acid is the name for DNA and RNA. They are composed of nucleotides. DNA molecules are double-stranded and RNA molecules are single-stranded. To initiate the process of information transfer, one strand of the double-stranded DNA chain serves as a template for the synthesis of a single strand of RNA that is complementary to the DNA strand. Read more...iWorksheets :4Vocabulary :3 Bio.4.2. Analyze the relationships between biochemical processes and energy use in the cell.
Bio.4.2.1. Analyze photosynthesis and cellular respiration in terms of how energy is stored, released, and transferred within and between these systems.
Cell processesFreeCellular metabolism is the set of chemical reactions that occur in living organisms in order to maintain life. Living organisms are unique in that they can extract energy from their environments and use it to carry out activities such as growth, development, and reproduction. Read more...iWorksheets :3Vocabulary :7 Photosynthesis and respirationPhotosynthesis may be thought of as a chemical reaction in which carbon dioxide from the air and water from the soil plus solar energy combine to produce carbohydrate and oxygen. What is similarity between human skeletal muscles and some bacteria? Match each Photosynthesis ad respiration term to its definition like Glucose, Chloroplast, Organelle, Guard Cells and many more. Read more...iWorksheets :4Vocabulary :2 NC.Chm. Chemistry
Matter: Properties & Change
Chm.1.1. Analyze the structure of atoms and ions.
Chm.1.1.1. Analyze the structure of atoms, isotopes, and ions.
Chm.1.1.2. Analyze an atom in terms of the location of electrons.
Chm.1.2. Understand the bonding that occurs in simple compounds in terms of bond type, strength, and properties.
Chm.1.2.2. Infer the type of bond and chemical formula formed between atoms.
Chm.1.2.3. Compare inter- and intra- particle forces.
Chm.1.2.4. Interpret the name and formula of compounds using IUPAC convention.
Chm.1.2.5. Compare the properties of ionic, covalent, metallic, and network compounds.
Chm.1.3. Understand the physical and chemical properties of atoms based on their position in the Periodic Table.
Chm.1.3.1. Classify the components of a periodic table (period, group, metal, metalloid, nonmetal, transition).
Chm.1.3.3. Infer the atomic size, reactivity, electronegativity, and ionization energy of an element from its position in the Periodic Table.
Energy: Conservation & Transfer
Chm.2.1. Understand the relationship among pressure, temperature, volume, and phase.
Chm.2.1.1. Explain the energetic nature of phase changes.
Matter and EnergyMatter is any substance that has mass and takes up space. Energy can be transferred as heat or as work. Energy is a property that matter has. Read more...iWorksheets :3 States of MatterThere are Four states of matter observable in everyday life: solid, liquid, gas, and plasma. Matter in the solid state has a fixed volume and shape, with component particles (atoms, molecules or ions) close together and fixed into place. Matter in the liquid state has a fixed volume, but has a variable shape that adapts to fit its container. Its particles are close together but move freely. Matter in the gaseous state has both variable volume and shape, adapting both to fit its container. Its particles are neither close together nor fixed in place. Matter in the plasma state has variable volume and shape. Read more...iWorksheets :3 Chm.2.1.4. Infer simple calorimetric calculations based on the concepts of heat lost equals heat gained and specific heat.
Chm.2.1.5. Explain the relationships between pressure, temperature, volume, and quantity of gas both qualitative and quantitative.
States of MatterThere are Four states of matter observable in everyday life: solid, liquid, gas, and plasma. Matter in the solid state has a fixed volume and shape, with component particles (atoms, molecules or ions) close together and fixed into place. Matter in the liquid state has a fixed volume, but has a variable shape that adapts to fit its container. Its particles are close together but move freely. Matter in the gaseous state has both variable volume and shape, adapting both to fit its container. Its particles are neither close together nor fixed in place. Matter in the plasma state has variable volume and shape. Read more...iWorksheets :3 Chm.2.2. Analyze chemical reactions in terms of quantities, product formation, and energy.
Chm.2.2.1. Explain the energy content of a chemical reaction.
Chm.2.2.2. Analyze the evidence of chemical change.
Chm.2.2.3. Analyze the Law of Conservation of Matter and how it applies to various types of chemical equations (synthesis, decomposition, single replacement, double replacement, and combustion).
Chm.2.2.5. Analyze quantitatively the composition of a substance (empirical formula, molecular formula, percent composition, and hydrates).
Interactions of Matter and Energy
Chm.3.1. Understand the factors affecting rate of reaction and chemical equilibrium.
Chm.3.1.1. Explain the factors that affect the rate of a reaction (temperature, concentration, particle size and presence of a catalyst).
Chm.3.1.2. Explain the conditions of a system at equilibrium.
Chm.3.2. Understand solutions and the solution process.
Chm.3.2.1. Classify substances using the hydronium and hydroxide ion concentrations.
Chm.3.2.2. Summarize the properties of acids and bases.
Chm.3.2.6. Explain the solution process.
NC.Phy. Physics
Forces and Motion
Phy.1.1. Analyze the motion of objects.
Phy.1.1.1. Analyze motion graphically and numerically using vectors, graphs and calculations.
Phy.1.1.2. Analyze motion in one dimension using time, distance, displacement, velocity, and acceleration.
Phy.1.1.3. Analyze motion in two dimensions using angle of trajectory, time, distance, displacement, velocity, and acceleration.
Phy.1.2. Analyze systems of forces and their interaction with matter.
Phy.1.2.1. Analyze forces and systems of forces graphically and numerically using vectors, graphs and calculations.
Phy.1.2.3. Explain forces using Newton's Laws of Motion as well as the Universal Law of Gravitation.
Phy.1.2.4. Explain the effects of forces (including weight, normal, tension and friction) on objects.
Phy.1.2.5. Analyze basic forces related to rotation in a circular path (Centripetal Force).
Phy.1.3. Analyze the motion of objects based on the principles of conservation of momentum, conservation of energy and impulse.
Phy.1.3.1. Analyze the motion of objects involved in completely elastic and completely inelastic collisions by using the principles of conservation of momentum and conservation of energy.
Phy.1.3.2. Analyze the motion of objects based on the relationship between momentum and impulse.
Energy: Conservation and Transfer
Phy.2.1. Understand the concepts of work, energy, and power, as well as the relationship among them.
Phy.2.1.1. Interpret data on work and energy presented graphically and numerically.
Phy.2.1.2. Compare the concepts of potential and kinetic energy and conservation of total mechanical energy in the description of the motion of objects.
Matter and EnergyMatter is any substance that has mass and takes up space. Energy can be transferred as heat or as work. Energy is a property that matter has. Read more...iWorksheets :3 Phy.2.1.3. Explain the relationship among work, power and energy.
Phy.2.2. Analyze the behavior of waves.
Phy.2.2.1. Analyze how energy is transmitted through waves, using the fundamental characteristics of waves: wavelength, period, frequency, amplitude, and wave velocity.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 Phy.2.2.2. Analyze wave behaviors in terms of transmission, reflection, refraction and interference.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 Phy.2.2.3. Compare mechanical and electromagnetic waves in terms of wave characteristics and behavior (specifically sound and light).
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 Phy.2.3. Analyze the nature of moving charges and electric circuits.
Phy.2.3.1. Explain Ohm's law in relation to electric circuits.
Phy.2.3.2. Differentiate the behavior of moving charges in conductors and insulators.
Phy.2.3.5. Analyze systems with multiple potential differences and resistors connected in series and parallel circuits, both conceptually and mathematically, in terms of voltage, current and resistance.
Interactions of Energy and Matter
Phy.3.1. Explain charges and electrostatic systems.
Phy.3.1.1. Explain qualitatively the fundamental properties of the interactions of charged objects.
Phy.3.1.4. Explain the mechanisms for producing electrostatic charges, including charging by friction, conduction, and induction.
Phy.3.2. Explain the concept of magnetism.
Phy.3.2.1. Explain the relationship between magnetic domains and magnetism.
Phy.3.2.3. Explain how transformers and power distributions are applications of electromagnetism.
NC.EEn. Earth/Environmental Science
Earth in the Universe
EEn.1.1. Explain the Earth's role as a body in space.
EEn.1.1.1. Explain the Earth's motion through space, including precession, nutation, the barycenter, and its path about the galaxy.
EEn.1.1.2. Explain how the Earth's rotation and revolution about the Sun affect its shape and is related to seasons and tides.
Earth: Systems, Structures and Processes
EEn.2.1. Explain how processes and forces affect the lithosphere.
EEn.2.1.1. Explain how the rock cycle, plate tectonics, volcanoes, and earthquakes impact the lithosphere.
EEn.2.1.2. Predict the locations of volcanoes, earthquakes, and faults based on information contained in a variety of maps.
EEn.2.1.3. Explain how natural actions such as weathering, erosion (wind, water and gravity), and soil formation affect Earth's surface.
EEn.2.1.4. Explain the probability of and preparation for geohazards such as landslides, avalanches, earthquakes and volcanoes in a particular area based on available data.
EEn.2.3. Explain the structure and processes within the hydrosphere.
Een.2.3.2. Explain how ground water and surface water interact.
EEn.2.4. Evaluate how humans use water.
EEn.2.4.1. Evaluate human influences on freshwater availability.
EEn.2.5. Understand the structure of and processes within our atmosphere.
EEn.2.5.1. Summarize the structure and composition of our atmosphere.
EEn.2.5.2. Explain the formation of typical air masses and the weather systems that result from air mass interactions.
EEn.2.5.3. Explain how cyclonic storms form based on the interaction of air masses.
EEn.2.5.4. Predict the weather using available weather maps and data (including surface, upper atmospheric winds, and satellite imagery).
EEn.2.5.5. Explain how human activities affect air quality.
EEn.2.6. Analyze patterns of global climate change over time.
EEn.2.6.1. Differentiate between weather and climate.
EEn.2.6.2. Explain changes in global climate due to natural processes.
EEn.2.6.3. Analyze the impacts that human activities have on global climate change (such as burning hydrocarbons, greenhouse effect, and deforestation).
EEn.2.6.4. Attribute changes in Earth systems to global climate change (temperature change, changes in pH of ocean, sea level changes, etc.).
EEn.2.7. Explain how the lithosphere, hydrosphere, and atmosphere individually and collectively affect the biosphere.
EEn.2.7.2. Explain why biodiversity is important to the biosphere.
Vertebrates IIA vertebrate is an animal with a spinal cord surrounded by cartilage or bone. The vertebrates are also characterized by a muscular system consisting primarily of bilaterally paired masses and a central nervous system partly enclosed within the backbone. The 7 classes of vertebrates are: Class Aves, Class Reptilia, Class Agnatha, Class Amphibia, Class Mammalia, Class Osteichthyes, Class Chondrichthyes. Read more...iWorksheets :3Vocabulary :3 NC.OBio. Occupational Course of Study - Biology
Structure and Functions of Living Organisms
OBio.1.1. Understand the relationship between the structures and functions of cells and their organelles.
Bio.1.1.1. Summarize the structure and function of organelles in eukaryotic cells (including: the nucleus, plasma membrane, cell wall, mitochondria, vacuoles, chloroplasts, and ribosomes) and ways that these organelles interact with each other to perform the function of the cell.
Cell structure and functionMatch each Cell structure term to its definition like DNA, Lysosomes, Mitochondrion, Lipids, Endoplasmic reticulum, Osmosis and many more. What are the organelles that provide the energy to sperm cells? What hemoglobin, insulin, albumin and maltase are composed of? These animal and plant cell worksheets recommended for students of High School Biology. Read more...iWorksheets :3Vocabulary :5 OBio.1.2. Analyze the cell as a living system.
Bio.1.2.1. Explain how homeostasis is maintained in the cell and within an organism in various environments (including: temperature and pH).
Cell processesFreeCellular metabolism is the set of chemical reactions that occur in living organisms in order to maintain life. Living organisms are unique in that they can extract energy from their environments and use it to carry out activities such as growth, development, and reproduction. Read more...iWorksheets :3Vocabulary :7 Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7 Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7 Ecosystems
OBio.2.1. Analyze the interdependence of living organisms within their environments.
Bio.2.1.1. Compare the flow of energy and cycling of matter (water, carbon, nitrogen and oxygen) through ecosystems relating the significance of each to maintaining the health and sustainability of an ecosystem.
Ecology IMatch each ecology term to its definition like Energy pyramid, Decomposer, Carnivore, Ecosystem, Owl pellet, Omnivore and many more. Which human activity would be more likely to have a positive/negative impact on the environment? Which factor determines the type of terrestrial plants that grow in an area? Which energy transfer is least likely to be found in nature? Read more...iWorksheets :4Vocabulary :2 Ecology IIMatch each Ecology term to its definition like Trophic level, Food web, Consumer, Energy, Herbivore and more. Which component is not recycled in an ecosystem? Why Vultures, which are classified as scavengers, are an important part of an ecosystem? Which characteristic does creeping vine that is parasitic on other plants shares with all other heterotrophs? Read more...iWorksheets :3Vocabulary :2 Evolution & Genetics
OBio.3.1. Explain how traits are determined by the structure and function of DNA.
Bio.3.1.2. Explain how DNA and RNA code for proteins and determine traits.
Nucleic acids and protein synthesisThe term nucleic acid is the name for DNA and RNA. They are composed of nucleotides. DNA molecules are double-stranded and RNA molecules are single-stranded. To initiate the process of information transfer, one strand of the double-stranded DNA chain serves as a template for the synthesis of a single strand of RNA that is complementary to the DNA strand. Read more...iWorksheets :4Vocabulary :3 Bio.3.1.3. Explain how mutations in DNA that result from interactions with the environment (i.e. radiation and chemicals) or new combinations in existing genes lead to changes in function and phenotype.
Nucleic acids and protein synthesisThe term nucleic acid is the name for DNA and RNA. They are composed of nucleotides. DNA molecules are double-stranded and RNA molecules are single-stranded. To initiate the process of information transfer, one strand of the double-stranded DNA chain serves as a template for the synthesis of a single strand of RNA that is complementary to the DNA strand. Read more...iWorksheets :4Vocabulary :3 OBio.3.2. Understand how the environment, and/or the interaction of alleles, influences the expression of genetic traits.
Bio.3.2.2. Predict offspring ratios based on a variety of inheritance patterns (including: dominance, co-dominance, incomplete dominance, multiple alleles, and sex-linked traits).
Genetics and heredity IHow many chromosomes would normally be contained in a gamete? Match each Genetics and heredity term to its definition like Genetic code, Crossing-over, Fertilization, Codon, Dominant allele, Ribosomes, Sex cells, Punnett square, Prophase II. Read more...iWorksheets :4Vocabulary :7 Bio.3.2.3. Explain how the environment can influence the expression of genetic traits.
Genetics and heredity IHow many chromosomes would normally be contained in a gamete? Match each Genetics and heredity term to its definition like Genetic code, Crossing-over, Fertilization, Codon, Dominant allele, Ribosomes, Sex cells, Punnett square, Prophase II. Read more...iWorksheets :4Vocabulary :7 OBio.3.3. Understand the application of DNA technology.
Bio.3.3.3. Evaluate some of the ethical issues surrounding the use of DNA technology (including: cloning, genetically modified organisms, stem cell research, and Human Genome Project).
DNA technology/genetic engineeringThis topic is about biology and Forensic science. Students will learn to identify the structure and function of DNA, RNA and protein. They will also learn to describe the importance of generic information to forensics. Read more...iWorksheets :4Vocabulary :3 Molecular Biology
OBio.4.1. Understand how biological molecules are essential to the survival of living organisms
Bio.4.1.2. Summarize the relationship among DNA, proteins and amino acids in carrying out the work of cells and how this is similar in all organisms.
Nucleic acids and protein synthesisThe term nucleic acid is the name for DNA and RNA. They are composed of nucleotides. DNA molecules are double-stranded and RNA molecules are single-stranded. To initiate the process of information transfer, one strand of the double-stranded DNA chain serves as a template for the synthesis of a single strand of RNA that is complementary to the DNA strand. Read more...iWorksheets :4Vocabulary :3 OBio.4.2. Analyze the relationships between biochemical processes and energy use.
Bio.4.2.1. Analyze photosynthesis and cellular respiration in terms of how energy is stored, released, and transferred within and between these systems.
Cell processesFreeCellular metabolism is the set of chemical reactions that occur in living organisms in order to maintain life. Living organisms are unique in that they can extract energy from their environments and use it to carry out activities such as growth, development, and reproduction. Read more...iWorksheets :3Vocabulary :7 Photosynthesis and respirationPhotosynthesis may be thought of as a chemical reaction in which carbon dioxide from the air and water from the soil plus solar energy combine to produce carbohydrate and oxygen. What is similarity between human skeletal muscles and some bacteria? Match each Photosynthesis ad respiration term to its definition like Glucose, Chloroplast, Organelle, Guard Cells and many more. Read more...iWorksheets :4Vocabulary :2 NC.OA. Occupational Course of Study - Applied Science
Forces and Motion
OA1.1. Understand force and motion.
OA1.1.1. Compare weight and mass.
OA1.1.2. Classify types of force (gravity, friction, magnetism).
OA1.1.3. Describe the effects of force (gravity, friction, magnetism) on an object's weight and motion.
Electricity and Magnetism
OA3.1. Understand electricity and magnetism
OA3.1.1. Interpret a compass.
Lab investigations/scientific methodA biologist reported success in breeding a tiger with a lion, producing healthy offspring. Other biologists will accept this report as fact only if other researchers can replicate the experiment. Read more...iWorksheets :3 Matter
OA4.1. Understand properties of matter (color, shape, volume, density, texture).
OA4.1.1. Distinguish between the three states of matter (solid, liquid, gas).
Matter and EnergyMatter is any substance that has mass and takes up space. Energy can be transferred as heat or as work. Energy is a property that matter has. Read more...iWorksheets :3 The Environment
OA6.1. Understand how humans can have positive and negative effects on the environment.
OA6.1.1. Explain how humans can have a positive impact on natural resources.
OceansWorksheets :4Vocabulary :3 OA6.1.2. Explain the effects of pollution on the earth, air and waterways and what can be done at the individual, family and community level to reduce pollution.
OceansWorksheets :4Vocabulary :3 Body Systems
OA7.1. Understand the human body's basic needs and control systems.
OA7.1.1. Explain the primary functions of the major systems of the human body and the major organs within these systems.
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7 Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7 OA7.1.2. Identify normal or desirable ranges for common health indicators (temperature, blood pressure, weight, cholesterol and blood glucose levels).
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7 Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7 NC.CC.9-10.RST. Reading Standards for Literacy in Science and Technical Subjects
Craft and Structure
9-10.RST.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
Integration of Knowledge and Ideas
9-10.RST.7. Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
NC.PSc. Physical Science
Forces and Motion
PSc.1.1. Understand motion in terms of speed, velocity, acceleration and momentum.
PSc.1.1.1. Explain motion in terms of frame of reference, distance, and displacement.
PSc.1.1.2. Compare speed, velocity, acceleration and momentum using investigations, graphing, scalar quantities and vector quantities.
Psc.1.2. Understand the relationship between forces and motion.
PSc.1.2.1. Explain how gravitational force affects the weight of an object and the velocity of an object in freefall.
PSc.1.2.2. Classify frictional forces into one of four types: static, sliding, rolling, and fluid.
PSc.1.2.3. Explain forces using Newton's Three Laws of Motion.
Matter: Properties and Change
PSc.2.2. Understand chemical bonding and chemical interactions.
PSc.2.2.3. Predict chemical formulas and names for simple compounds based on knowledge of bond formation and naming conventions.
Energy: Conservation and Transfer
PSc.3.2. Understand the nature of waves.
PSc.3.2.1. Explain the relationships among wave frequency, wave period, wave velocity and wavelength through calculation and investigation.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.2.2. Compare waves (mechanical, electromagnetic, and surface) using their characteristics.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.2.3. Classify waves as transverse or compressional (longitudinal).
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.2.4. Illustrate the wave interactions of reflection, refraction, diffraction, and interference.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.3. Understand electricity and magnetism and their relationship.
PSc.3.3.1. Summarize static and current electricity.
PSc.3.3.2. Explain simple series and parallel DC circuits in terms of Ohm's Law.
PSc.3.3.3. Explain how current is affected by changes in composition, length, temperature, and diameter of wire.
NC.Phy. Physics
Forces and Motion
Phy.1.1. Analyze the motion of objects.
Phy.1.1.1. Analyze motion graphically and numerically using vectors, graphs and calculations.
Phy.1.1.2. Analyze motion in one dimension using time, distance, displacement, velocity, and acceleration.
Phy.1.1.3. Analyze motion in two dimensions using angle of trajectory, time, distance, displacement, velocity, and acceleration.
Phy.1.2. Analyze systems of forces and their interaction with matter.
Phy.1.2.1. Analyze forces and systems of forces graphically and numerically using vectors, graphs and calculations.
Phy.1.2.3. Explain forces using Newton's Laws of Motion as well as the Universal Law of Gravitation.
Phy.1.2.4. Explain the effects of forces (including weight, normal, tension and friction) on objects.
Phy.1.2.5. Analyze basic forces related to rotation in a circular path (Centripetal Force).
Energy: Conservation and Transfer
Phy.2.1. Understand the concepts of work, energy, and power, as well as the relationship among them.
Phy.2.1.2. Compare the concepts of potential and kinetic energy and conservation of total mechanical energy in the description of the motion of objects.
Phy.2.2. Analyze the behavior of waves.
Phy.2.2.1. Analyze how energy is transmitted through waves, using the fundamental characteristics of waves: wavelength, period, frequency, amplitude, and wave velocity.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 Phy.2.2.2. Analyze wave behaviors in terms of transmission, reflection, refraction and interference.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 Phy.2.2.3. Compare mechanical and electromagnetic waves in terms of wave characteristics and behavior (specifically sound and light).
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 Phy.2.3. Analyze the nature of moving charges and electric circuits.
Phy.2.3.1. Explain Ohm's law in relation to electric circuits.
Phy.2.3.2. Differentiate the behavior of moving charges in conductors and insulators.
Phy.2.3.5. Analyze systems with multiple potential differences and resistors connected in series and parallel circuits, both conceptually and mathematically, in terms of voltage, current and resistance.
Interactions of Energy and Matter
Phy.3.1. Explain charges and electrostatic systems.
Phy.3.1.4. Explain the mechanisms for producing electrostatic charges, including charging by friction, conduction, and induction.
NC.EEn. Earth/Environmental Science
Earth in the Universe
EEn.1.1. Explain the Earth's role as a body in space.
EEn.1.1.1. Explain the Earth's motion through space, including precession, nutation, the barycenter, and its path about the galaxy.
EEn.1.1.2. Explain how the Earth's rotation and revolution about the Sun affect its shape and is related to seasons and tides.
Earth: Systems, Structures and Processes
EEn.2.1. Explain how processes and forces affect the lithosphere.
EEn.2.1.1. Explain how the rock cycle, plate tectonics, volcanoes, and earthquakes impact the lithosphere.
EEn.2.1.2. Predict the locations of volcanoes, earthquakes, and faults based on information contained in a variety of maps.
EEn.2.1.3. Explain how natural actions such as weathering, erosion (wind, water and gravity), and soil formation affect Earth's surface.
EEn.2.1.4. Explain the probability of and preparation for geohazards such as landslides, avalanches, earthquakes and volcanoes in a particular area based on available data.
EEn.2.3. Explain the structure and processes within the hydrosphere.
Een.2.3.2. Explain how ground water and surface water interact.
EEn.2.4. Evaluate how humans use water.
EEn.2.4.1. Evaluate human influences on freshwater availability.
EEn.2.5. Understand the structure of and processes within our atmosphere.
EEn.2.5.1. Summarize the structure and composition of our atmosphere.
EEn.2.5.2. Explain the formation of typical air masses and the weather systems that result from air mass interactions.
EEn.2.5.3. Explain how cyclonic storms form based on the interaction of air masses.
EEn.2.5.4. Predict the weather using available weather maps and data (including surface, upper atmospheric winds, and satellite imagery).
EEn.2.5.5. Explain how human activities affect air quality.
EEn.2.6. Analyze patterns of global climate change over time.
EEn.2.6.1. Differentiate between weather and climate.
EEn.2.6.2. Explain changes in global climate due to natural processes.
EEn.2.6.3. Analyze the impacts that human activities have on global climate change (such as burning hydrocarbons, greenhouse effect, and deforestation).
EEn.2.6.4. Attribute changes in Earth systems to global climate change (temperature change, changes in pH of ocean, sea level changes, etc.).
NC.OA. Occupational Course of Study - Applied Science
Forces and Motion
OA1.1. Understand force and motion.
OA1.1.2. Classify types of force (gravity, friction, magnetism).
OA1.1.3. Describe the effects of force (gravity, friction, magnetism) on an object's weight and motion.
Electricity and Magnetism
OA3.1. Understand electricity and magnetism
OA3.1.1. Interpret a compass.
The Environment
OA6.1. Understand how humans can have positive and negative effects on the environment.
OA6.1.1. Explain how humans can have a positive impact on natural resources.
OceansWorksheets :4Vocabulary :3 OA6.1.2. Explain the effects of pollution on the earth, air and waterways and what can be done at the individual, family and community level to reduce pollution.
OceansWorksheets :4Vocabulary :3 NC.CC.9-10.RST. Reading Standards for Literacy in Science and Technical Subjects
Craft and Structure
9-10.RST.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9-10 texts and topics.
Chemical ReactionsChemical reaction is a process in which one or more substances, are converted to one or more different products. Synthesis - a chemical reaction where two or more elements or compounds combine to form a single product. Single Replacement Reaction - a chemical reaction where a more active element replaces a less active element in a compound. Decomposition - a chemical reaction in which a compound is broken down into simpler compounds or elements. Read more...iWorksheets :6Vocabulary :3 Integration of Knowledge and Ideas
9-10.RST.7. Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
Chemical ReactionsChemical reaction is a process in which one or more substances, are converted to one or more different products. Synthesis - a chemical reaction where two or more elements or compounds combine to form a single product. Single Replacement Reaction - a chemical reaction where a more active element replaces a less active element in a compound. Decomposition - a chemical reaction in which a compound is broken down into simpler compounds or elements. Read more...iWorksheets :6Vocabulary :3 NC.PSc. Physical Science
Forces and Motion
PSc.1.1. Understand motion in terms of speed, velocity, acceleration and momentum.
PSc.1.1.1. Explain motion in terms of frame of reference, distance, and displacement.
PSc.1.1.2. Compare speed, velocity, acceleration and momentum using investigations, graphing, scalar quantities and vector quantities.
Psc.1.2. Understand the relationship between forces and motion.
PSc.1.2.1. Explain how gravitational force affects the weight of an object and the velocity of an object in freefall.
PSc.1.2.2. Classify frictional forces into one of four types: static, sliding, rolling, and fluid.
PSc.1.2.3. Explain forces using Newton's Three Laws of Motion.
Matter: Properties and Change
PSc.2.2. Understand chemical bonding and chemical interactions.
PSc.2.2.3. Predict chemical formulas and names for simple compounds based on knowledge of bond formation and naming conventions.
Energy: Conservation and Transfer
PSc.3.2. Understand the nature of waves.
PSc.3.2.1. Explain the relationships among wave frequency, wave period, wave velocity and wavelength through calculation and investigation.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.2.2. Compare waves (mechanical, electromagnetic, and surface) using their characteristics.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.2.3. Classify waves as transverse or compressional (longitudinal).
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.2.4. Illustrate the wave interactions of reflection, refraction, diffraction, and interference.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.3. Understand electricity and magnetism and their relationship.
PSc.3.3.1. Summarize static and current electricity.
PSc.3.3.2. Explain simple series and parallel DC circuits in terms of Ohm's Law.
PSc.3.3.3. Explain how current is affected by changes in composition, length, temperature, and diameter of wire.
NC.Chm. Chemistry
Matter: Properties & Change
Chm.1.2. Understand the bonding that occurs in simple compounds in terms of bond type, strength, and properties.
Chm.1.2.2. Infer the type of bond and chemical formula formed between atoms.
Energy: Conservation & Transfer
Chm.2.2. Analyze chemical reactions in terms of quantities, product formation, and energy.
Chm.2.2.5. Analyze quantitatively the composition of a substance (empirical formula, molecular formula, percent composition, and hydrates).
NC.Phy. Physics
Forces and Motion
Phy.1.1. Analyze the motion of objects.
Phy.1.1.1. Analyze motion graphically and numerically using vectors, graphs and calculations.
Phy.1.1.2. Analyze motion in one dimension using time, distance, displacement, velocity, and acceleration.
Phy.1.1.3. Analyze motion in two dimensions using angle of trajectory, time, distance, displacement, velocity, and acceleration.
Phy.1.2. Analyze systems of forces and their interaction with matter.
Phy.1.2.1. Analyze forces and systems of forces graphically and numerically using vectors, graphs and calculations.
Phy.1.2.3. Explain forces using Newton's Laws of Motion as well as the Universal Law of Gravitation.
Phy.1.2.4. Explain the effects of forces (including weight, normal, tension and friction) on objects.
Phy.1.2.5. Analyze basic forces related to rotation in a circular path (Centripetal Force).
Energy: Conservation and Transfer
Phy.2.1. Understand the concepts of work, energy, and power, as well as the relationship among them.
Phy.2.1.2. Compare the concepts of potential and kinetic energy and conservation of total mechanical energy in the description of the motion of objects.
Phy.2.2. Analyze the behavior of waves.
Phy.2.2.1. Analyze how energy is transmitted through waves, using the fundamental characteristics of waves: wavelength, period, frequency, amplitude, and wave velocity.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 Phy.2.2.2. Analyze wave behaviors in terms of transmission, reflection, refraction and interference.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 Phy.2.2.3. Compare mechanical and electromagnetic waves in terms of wave characteristics and behavior (specifically sound and light).
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 Phy.2.3. Analyze the nature of moving charges and electric circuits.
Phy.2.3.1. Explain Ohm's law in relation to electric circuits.
Phy.2.3.2. Differentiate the behavior of moving charges in conductors and insulators.
Phy.2.3.5. Analyze systems with multiple potential differences and resistors connected in series and parallel circuits, both conceptually and mathematically, in terms of voltage, current and resistance.
Interactions of Energy and Matter
Phy.3.1. Explain charges and electrostatic systems.
Phy.3.1.4. Explain the mechanisms for producing electrostatic charges, including charging by friction, conduction, and induction.
NC.EEn. Earth/Environmental Science
Earth in the Universe
EEn.1.1. Explain the Earth's role as a body in space.
EEn.1.1.1. Explain the Earth's motion through space, including precession, nutation, the barycenter, and its path about the galaxy.
EEn.1.1.2. Explain how the Earth's rotation and revolution about the Sun affect its shape and is related to seasons and tides.
Earth: Systems, Structures and Processes
EEn.2.1. Explain how processes and forces affect the lithosphere.
EEn.2.1.1. Explain how the rock cycle, plate tectonics, volcanoes, and earthquakes impact the lithosphere.
EEn.2.1.2. Predict the locations of volcanoes, earthquakes, and faults based on information contained in a variety of maps.
EEn.2.1.3. Explain how natural actions such as weathering, erosion (wind, water and gravity), and soil formation affect Earth's surface.
EEn.2.1.4. Explain the probability of and preparation for geohazards such as landslides, avalanches, earthquakes and volcanoes in a particular area based on available data.
EEn.2.3. Explain the structure and processes within the hydrosphere.
Een.2.3.2. Explain how ground water and surface water interact.
EEn.2.4. Evaluate how humans use water.
EEn.2.4.1. Evaluate human influences on freshwater availability.
EEn.2.5. Understand the structure of and processes within our atmosphere.
EEn.2.5.1. Summarize the structure and composition of our atmosphere.
EEn.2.5.2. Explain the formation of typical air masses and the weather systems that result from air mass interactions.
EEn.2.5.3. Explain how cyclonic storms form based on the interaction of air masses.
EEn.2.5.4. Predict the weather using available weather maps and data (including surface, upper atmospheric winds, and satellite imagery).
EEn.2.5.5. Explain how human activities affect air quality.
EEn.2.6. Analyze patterns of global climate change over time.
EEn.2.6.1. Differentiate between weather and climate.
EEn.2.6.2. Explain changes in global climate due to natural processes.
EEn.2.6.3. Analyze the impacts that human activities have on global climate change (such as burning hydrocarbons, greenhouse effect, and deforestation).
EEn.2.6.4. Attribute changes in Earth systems to global climate change (temperature change, changes in pH of ocean, sea level changes, etc.).
NC.OA. Occupational Course of Study - Applied Science
Forces and Motion
OA1.1. Understand force and motion.
OA1.1.2. Classify types of force (gravity, friction, magnetism).
OA1.1.3. Describe the effects of force (gravity, friction, magnetism) on an object's weight and motion.
Electricity and Magnetism
OA3.1. Understand electricity and magnetism
OA3.1.1. Interpret a compass.
The Environment
OA6.1. Understand how humans can have positive and negative effects on the environment.
OA6.1.1. Explain how humans can have a positive impact on natural resources.
OceansWorksheets :4Vocabulary :3 OA6.1.2. Explain the effects of pollution on the earth, air and waterways and what can be done at the individual, family and community level to reduce pollution.
OceansWorksheets :4Vocabulary :3 NC.CC.11-12.RST. Reading Standards for Literacy in Science and Technical Subjects
Craft and Structure
11-12.RST.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11-12 texts and topics.
Chemical ReactionsChemical reaction is a process in which one or more substances, are converted to one or more different products. Synthesis - a chemical reaction where two or more elements or compounds combine to form a single product. Single Replacement Reaction - a chemical reaction where a more active element replaces a less active element in a compound. Decomposition - a chemical reaction in which a compound is broken down into simpler compounds or elements. Read more...iWorksheets :6Vocabulary :3 NC.PSc. Physical Science
Forces and Motion
PSc.1.1. Understand motion in terms of speed, velocity, acceleration and momentum.
PSc.1.1.1. Explain motion in terms of frame of reference, distance, and displacement.
PSc.1.1.2. Compare speed, velocity, acceleration and momentum using investigations, graphing, scalar quantities and vector quantities.
Psc.1.2. Understand the relationship between forces and motion.
PSc.1.2.1. Explain how gravitational force affects the weight of an object and the velocity of an object in freefall.
PSc.1.2.2. Classify frictional forces into one of four types: static, sliding, rolling, and fluid.
PSc.1.2.3. Explain forces using Newton's Three Laws of Motion.
Energy: Conservation and Transfer
PSc.3.2. Understand the nature of waves.
PSc.3.2.1. Explain the relationships among wave frequency, wave period, wave velocity and wavelength through calculation and investigation.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.2.2. Compare waves (mechanical, electromagnetic, and surface) using their characteristics.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.2.3. Classify waves as transverse or compressional (longitudinal).
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.2.4. Illustrate the wave interactions of reflection, refraction, diffraction, and interference.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 PSc.3.3. Understand electricity and magnetism and their relationship.
PSc.3.3.1. Summarize static and current electricity.
PSc.3.3.2. Explain simple series and parallel DC circuits in terms of Ohm's Law.
PSc.3.3.3. Explain how current is affected by changes in composition, length, temperature, and diameter of wire.
NC.Phy. Physics
Forces and Motion
Phy.1.1. Analyze the motion of objects.
Phy.1.1.1. Analyze motion graphically and numerically using vectors, graphs and calculations.
Phy.1.1.2. Analyze motion in one dimension using time, distance, displacement, velocity, and acceleration.
Phy.1.1.3. Analyze motion in two dimensions using angle of trajectory, time, distance, displacement, velocity, and acceleration.
Phy.1.2. Analyze systems of forces and their interaction with matter.
Phy.1.2.1. Analyze forces and systems of forces graphically and numerically using vectors, graphs and calculations.
Phy.1.2.3. Explain forces using Newton's Laws of Motion as well as the Universal Law of Gravitation.
Phy.1.2.4. Explain the effects of forces (including weight, normal, tension and friction) on objects.
Phy.1.2.5. Analyze basic forces related to rotation in a circular path (Centripetal Force).
Energy: Conservation and Transfer
Phy.2.1. Understand the concepts of work, energy, and power, as well as the relationship among them.
Phy.2.1.2. Compare the concepts of potential and kinetic energy and conservation of total mechanical energy in the description of the motion of objects.
Phy.2.2. Analyze the behavior of waves.
Phy.2.2.1. Analyze how energy is transmitted through waves, using the fundamental characteristics of waves: wavelength, period, frequency, amplitude, and wave velocity.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 Phy.2.2.2. Analyze wave behaviors in terms of transmission, reflection, refraction and interference.
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 Phy.2.2.3. Compare mechanical and electromagnetic waves in terms of wave characteristics and behavior (specifically sound and light).
Vibrations and WavesVibration is the analogous motion of the particles of a mass of air or the like, whose state of equilibrium has been disturbed, as in transmitting sound. Read more...iWorksheets :4 Phy.2.3. Analyze the nature of moving charges and electric circuits.
Phy.2.3.1. Explain Ohm's law in relation to electric circuits.
Phy.2.3.2. Differentiate the behavior of moving charges in conductors and insulators.
Phy.2.3.5. Analyze systems with multiple potential differences and resistors connected in series and parallel circuits, both conceptually and mathematically, in terms of voltage, current and resistance.
Interactions of Energy and Matter
Phy.3.1. Explain charges and electrostatic systems.
Phy.3.1.4. Explain the mechanisms for producing electrostatic charges, including charging by friction, conduction, and induction.
NC.EEn. Earth/Environmental Science
Earth in the Universe
EEn.1.1. Explain the Earth's role as a body in space.
EEn.1.1.1. Explain the Earth's motion through space, including precession, nutation, the barycenter, and its path about the galaxy.
EEn.1.1.2. Explain how the Earth's rotation and revolution about the Sun affect its shape and is related to seasons and tides.
Earth: Systems, Structures and Processes
EEn.2.1. Explain how processes and forces affect the lithosphere.
EEn.2.1.1. Explain how the rock cycle, plate tectonics, volcanoes, and earthquakes impact the lithosphere.
EEn.2.1.2. Predict the locations of volcanoes, earthquakes, and faults based on information contained in a variety of maps.
EEn.2.1.3. Explain how natural actions such as weathering, erosion (wind, water and gravity), and soil formation affect Earth's surface.
EEn.2.1.4. Explain the probability of and preparation for geohazards such as landslides, avalanches, earthquakes and volcanoes in a particular area based on available data.
EEn.2.3. Explain the structure and processes within the hydrosphere.
Een.2.3.2. Explain how ground water and surface water interact.
EEn.2.4. Evaluate how humans use water.
EEn.2.4.1. Evaluate human influences on freshwater availability.
EEn.2.5. Understand the structure of and processes within our atmosphere.
EEn.2.5.1. Summarize the structure and composition of our atmosphere.
EEn.2.5.2. Explain the formation of typical air masses and the weather systems that result from air mass interactions.
EEn.2.5.3. Explain how cyclonic storms form based on the interaction of air masses.
EEn.2.5.4. Predict the weather using available weather maps and data (including surface, upper atmospheric winds, and satellite imagery).
EEn.2.5.5. Explain how human activities affect air quality.
EEn.2.6. Analyze patterns of global climate change over time.
EEn.2.6.1. Differentiate between weather and climate.
EEn.2.6.2. Explain changes in global climate due to natural processes.
EEn.2.6.3. Analyze the impacts that human activities have on global climate change (such as burning hydrocarbons, greenhouse effect, and deforestation).
EEn.2.6.4. Attribute changes in Earth systems to global climate change (temperature change, changes in pH of ocean, sea level changes, etc.).
NC.OA. Occupational Course of Study - Applied Science
Forces and Motion
OA1.1. Understand force and motion.
OA1.1.2. Classify types of force (gravity, friction, magnetism).
OA1.1.3. Describe the effects of force (gravity, friction, magnetism) on an object's weight and motion.
Electricity and Magnetism
OA3.1. Understand electricity and magnetism
OA3.1.1. Interpret a compass.
The Environment
OA6.1. Understand how humans can have positive and negative effects on the environment.
OA6.1.1. Explain how humans can have a positive impact on natural resources.
OceansWorksheets :4Vocabulary :3 OA6.1.2. Explain the effects of pollution on the earth, air and waterways and what can be done at the individual, family and community level to reduce pollution.
OceansWorksheets :4Vocabulary :3 Standards
NewPath Learning resources are fully aligned to US Education Standards. Select a standard below to view correlations to your selected resource: