Kentucky Academic Standards for Sixth Grade Math

Add/Subtract FractionsAdding or substracting fractions means to add or subtract the numerators and write the sum over the common denominator. Read more...iWorksheets: 7Study Guides: 1
Adding FractionsAdding fractions is the operation of adding two or more different fractions. Read more...iWorksheets: 3Study Guides: 1
AreaAn area is the amount of surface a shape covers. <br>An area is measured in inches, feet, meters or centimeters. Read more...iWorksheets: 3Study Guides: 1
Area and Circumference of CirclesFreeThe circumference of a circle is the distance around the outside. The area of a circle is the space contained within the circumference. It is measured in square units. Read more...iWorksheets: 4Study Guides: 1
Area of Triangles and QuadrilateralsThe area is the surface or space within an enclosed region. Area is expressed in square units. Read more...iWorksheets: 3Study Guides: 1Vocabulary Sets: 2
Commutative/Associative PropertiesThe commutative property allows us to change the order of the numbers without changing the outcome of the problem. The associative property allows us to change the grouping of the numbers. Read more...iWorksheets: 4Study Guides: 1
Diameter of CircleThe diameter of a circle is a line segment that passes through the center of a circle connecting one side of the circle to the other. Read more...iWorksheets: 3Study Guides: 1
DivisionDivision is a mathematical operation is which a number, called a dividend is divided by another number, called a divisor to get a result, called a quotient. Read more...iWorksheets: 3Study Guides: 1
EstimationEstimation is the process of rounding a number either up or down to the nearest place value requested. Estimation makes it easier to perform mathematical operations quickly. Read more...iWorksheets: 6Study Guides: 1
GraphsA graph is a diagram that shows information in an organized way. Read more...iWorksheets: 6Study Guides: 1
Mixed NumbersA mixed number has both a whole number and a fraction. Read more...iWorksheets: 4Study Guides: 1
MultiplicationMultiplication is a mathematical operation in which numbers, called factors, are multiplied together to get a result, called a product. Multiplication can be used with numbers or decimals of any size. Read more...iWorksheets: 3Study Guides: 1
Multiply FractionsMultiplying fractions is the operation of multiplying two or more fractions together to find a product. Read more...iWorksheets: 3Study Guides: 1
Number PatternsA number pattern is a group of numbers that are related to one another in some sort of pattern. Finding a pattern is a simpler way to solve a problem. Read more...iWorksheets: 3Study Guides: 1
Percent, Rate, BaseA percent is a way of comparing a number with 100. Percents are usually written with a percent sign. To solve a percent problem, multiply the value by the percent using one of the representations for the percent. Read more...iWorksheets: 3Study Guides: 1
PerimeterA perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. Read more...iWorksheets: 3Study Guides: 1
ProbabilityProbability word problems worksheets. Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. The closer a probability is to 1, the more certain that an event will occur. Read more...iWorksheets: 3Study Guides: 1
Simplify FractionsSimplifying fractions is the process of reducing fractions and putting them into their lowest terms. Read more...iWorksheets: 3Study Guides: 1
TablesTables refer to the different types of diagram used to display data. <br>There are many types of tables such as data table, frequency table, line chart and stern-and-leaf plot. Read more...iWorksheets: 3Study Guides: 1
Whole Numbers to TrillionsThe number system we use is based on a place value system. Although there are only 10 different digits in this system, it is possible to order them in so many variations that the numbers represented are infinite. Read more...iWorksheets: 4Study Guides: 1

Ratios and Proportional Relationships

Cluster: Understanding ratio concepts and use ratio reasoning to solve problems.

KY.6.RP.1. Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MP.2, MP.6)
Proportions/Equivalent FractionsEquivalent fractions represent the same ratio between two values. Read more...iWorksheets :3Study Guides :1
RatioRatios are used to make a comparison between two things. Read more...iWorksheets :7Study Guides :1Vocabulary :1
RatioA ratio is a comparison of two numbers. The two numbers must have the same unit in order to be compared. Read more...iWorksheets :3Study Guides :1
Simple ProportionsA proportion is a statement that two ratios are equal. A ratio is a pair of numbers used to show a comparison. To solve a proportion, calculate equivalent fractions in order to be sure the two fractions (ratios) are equal. Read more...iWorksheets :3Study Guides :1
Numerical ProportionsNumerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1
KY.6.RP.2. Understand the concept of a unit rate a/b associated with a ratio a:b with B≠0 and use rate language in the context of a ratio relationship. (MP.2, MP.6)
Numerical ProportionsNumerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1
KY.6.RP.3. Use ratio and rate reasoning to solve real-world and mathematical problems. (MP.1, MP.4, MP.7)
KY.6.RP.3.a. Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
Proportions/Equivalent FractionsEquivalent fractions represent the same ratio between two values. Read more...iWorksheets :3Study Guides :1
RatioRatios are used to make a comparison between two things. Read more...iWorksheets :7Study Guides :1Vocabulary :1
RatioA ratio is a comparison of two numbers. The two numbers must have the same unit in order to be compared. Read more...iWorksheets :3Study Guides :1
Simple ProportionsA proportion is a statement that two ratios are equal. A ratio is a pair of numbers used to show a comparison. To solve a proportion, calculate equivalent fractions in order to be sure the two fractions (ratios) are equal. Read more...iWorksheets :3Study Guides :1
Numerical ProportionsNumerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1
KY.6.RP.3.b. Solve rate problems including those involving unit pricing and constant speed.
Numerical ProportionsNumerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1
KY.6.RP.3.c. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.
MeasurementFreeThere are many units of measurement: inches, feet, yards, miles, millimeters, meters, seconds, minutes, hours, cups, pints, quarts, gallons, ounces, pounds, etc Read more...iWorksheets :6Study Guides :1

The Number System

Cluster: Apply and extend previous understandings of multiplication and division to divide fractions by fractions.

KY.6.NS.1. Interpret and compute quotients of fractions and solve word problems involving division of fractions by fractions. (MP.1, MP.2, MP.3)
Multiply / Divide FractionsTo multiply two fractions with unlike denominators, multiply the numerators and multiply the denominators. It is unnecessary to change the denominators for this operation. Read more...iWorksheets :4Study Guides :1
Fraction OperationsFraction operations are the processes of adding, subtracting, multiplying and dividing fractions and mixed numbers. A mixed number is a fraction with a whole number. Adding fractions is common in many everyday events, such as making a recipe and measuring wood. In order to add and subtract fractions, the fractions must have the same denominator. Read more...iWorksheets :3Study Guides :1

Cluster: Compute fluently with multi-digit numbers and find common factors and multiples.

KY.6.NS.2. Fluently divide multi-digit numbers using an algorithm. (MP.7, MP.8)
KY.6.NS.2.a. Convert a rational number to a decimal using long division.
PercentsA percentage is a number or ratio expressed as a fraction of 100. Read more...iWorksheets :6Study Guides :1Vocabulary :1
PercentageThe term percent refers to a fraction in which the denominator is 100. It is a way to compare a number with 100. Read more...iWorksheets :6Study Guides :1
Multiple Representation of Rational NumbersWhat are multiple representations of rational numbers? A rational number represents a value or a part of a value. Rational numbers can be written as integers, fractions, decimals, and percents.The different representations for any given rational number are all equivalent. Read more...iWorksheets :3Study Guides :1
Rational and Irrational NumbersA rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. An irrational number is a number that cannot be made into a fraction. Decimals that do not repeat or end are irrational numbers. Pi is an irrational number. Read more...iWorksheets :3Study Guides :1
Introduction to PercentWhat Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets :4Study Guides :1
KY.6.NS.3. Fluently add, subtract, multiply and divide multi-digit decimals using an algorithm for each operation. (MP.2, MP.6)
Add/Subtract/Multiply/Divide DecimalsYou add/subtract/multiply/divide decimals the same way you add/subtract/multiply/divide whole numbers BUT you also need to place the decimal in the correct spot. When multiplying decimals, the decimals may or may NOT be lined up in the multiplication problem. Read more...iWorksheets :10Study Guides :1Vocabulary :1
Decimal OperationsDecimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets :3Study Guides :1
KY.6.NS.4. Use the distributive property to express a sum of two whole numbers 1–100 with a common factor as a multiple of a sum of two whole numbers with no common factor. (MP.8)
Distributive PropertyThe distributive property offers a choice in multiplication of two ways to treat the addends in the equation. We are multiplying a sum by a factor which results in the same product as multiplying each addend by the factor and then adding the products. Read more...iWorksheets :3Study Guides :1
Using IntegersIntegers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1

Cluster: Apply and extend previous understanding of numbers to the system of rational numbers.

KY.6.NS.5. Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MP.1, MP.2, MP.4)
Positive & Negative IntegersPositive integers are all the whole numbers greater than zero. Negative integers are all the opposites of these whole numbers, numbers that are less than zero. Zero is considered neither positive nor negative Read more...iWorksheets :4Study Guides :1
Using IntegersIntegers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1
KY.6.NS.6. Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes, using appropriate range and intervals, to represent points on the line and in the plane, that include negative numbers and coordinates. (MP.2, MP.4)
KY.6.NS.6.b. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.
Plot PointsYou use plot points to place a point on a coordinate plane by using X and Y coordinates to draw on a coordinate grid. Read more...iWorksheets :3Study Guides :1Vocabulary :1
CoordinatesThe use of coordinates pertains to graphing and the quadrants that are formed by the x and y-axis. Read more...iWorksheets :3Study Guides :1
Plotting PointsIn a coordinate pair, the first number indicates the position of the point along the horizontal axis of the grid. The second number indicates the position of the point along the vertical axis. Read more...iWorksheets :4Study Guides :1Vocabulary :1
Graphs and TablesUsing tables and graphs is a way people can interpret data. Data means information. So interpreting data just means working out what information is telling you. Information is sometimes shown in tables, charts and graphs to make the information easier to read. Read more...iWorksheets :3Study Guides :1
Area of Coordinate PolygonsCalculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1
KY.6.NS.6.c. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize the similarity between whole numbers, their negative opposites and their positions on a number line, ordered pairs differ only by signs and their locations on one or both axes.
Plot PointsYou use plot points to place a point on a coordinate plane by using X and Y coordinates to draw on a coordinate grid. Read more...iWorksheets :3Study Guides :1Vocabulary :1
CoordinatesThe use of coordinates pertains to graphing and the quadrants that are formed by the x and y-axis. Read more...iWorksheets :3Study Guides :1
Plotting PointsIn a coordinate pair, the first number indicates the position of the point along the horizontal axis of the grid. The second number indicates the position of the point along the vertical axis. Read more...iWorksheets :4Study Guides :1Vocabulary :1
Graphs and TablesUsing tables and graphs is a way people can interpret data. Data means information. So interpreting data just means working out what information is telling you. Information is sometimes shown in tables, charts and graphs to make the information easier to read. Read more...iWorksheets :3Study Guides :1
Area of Coordinate PolygonsCalculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1
KY.6.NS.7. Understand ordering and absolute value of rational numbers. (MP.1, MP.2, MP.4)
KY.6.NS.7.b. Write, interpret and explain statements of order for rational numbers in real-world contexts.
Fractions/DecimalsAny fraction can be changed into a decimal and any decimal can be changed into a fraction. Read more...iWorksheets :3Study Guides :1
Ordering DecimalsWhen putting decimals in order from least to greatest, we must look at the highest place value first. Read more...iWorksheets :6Study Guides :1Vocabulary :1
Compare and Order FractionsWhen comparing two fractions that have a common denominator, you can looks at the numerators to decide which fraction is greater Read more...iWorksheets :3Study Guides :1Vocabulary :1
Ordering FractionsThe order of rational numbers depends on their relationship to each other and to zero. Rational numbers can be dispersed along a number line in both directions from zero. Read more...iWorksheets :6Study Guides :1
Positive & Negative IntegersPositive integers are all the whole numbers greater than zero. Negative integers are all the opposites of these whole numbers, numbers that are less than zero. Zero is considered neither positive nor negative Read more...iWorksheets :4Study Guides :1
Ordering FractionsA fraction consists of two numbers separated by a line - numerator and denominator. To order fractions with like numerators, look at the denominators and compare them two at a time. The fraction with the smaller denominator is the larger fraction. Read more...iWorksheets :3Study Guides :1
Fractions/DecimalsHow to convert fractions to decimals: Divide the denominator (the bottom part) into the numerator (the top part). Read more...iWorksheets :3Study Guides :1
Less Than, Greater ThanCompare fractions and decimals using <, >, or =. Read more...iWorksheets :3Study Guides :1
Rational and Irrational NumbersA rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. An irrational number is a number that cannot be made into a fraction. Decimals that do not repeat or end are irrational numbers. Pi is an irrational number. Read more...iWorksheets :3Study Guides :1
Exponents, Factors and FractionsIn a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :4Study Guides :1
KY.6.NS.7.d. Distinguish comparisons of absolute value from statements about order.
Positive & Negative IntegersPositive integers are all the whole numbers greater than zero. Negative integers are all the opposites of these whole numbers, numbers that are less than zero. Zero is considered neither positive nor negative Read more...iWorksheets :4Study Guides :1
KY.6.NS.8. Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate. (MP.5, MP.7)
Plot PointsYou use plot points to place a point on a coordinate plane by using X and Y coordinates to draw on a coordinate grid. Read more...iWorksheets :3Study Guides :1Vocabulary :1
CoordinatesThe use of coordinates pertains to graphing and the quadrants that are formed by the x and y-axis. Read more...iWorksheets :3Study Guides :1
Plotting PointsIn a coordinate pair, the first number indicates the position of the point along the horizontal axis of the grid. The second number indicates the position of the point along the vertical axis. Read more...iWorksheets :4Study Guides :1Vocabulary :1
Area of Coordinate PolygonsCalculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1

Expressions and Equations

Cluster: Apply and extend previous understandings of arithmetic to algebraic expressions.

KY.6.EE.1. Write and evaluate numerical expressions involving whole-number exponents. (MP.2, MP.6)
Exponents to Repeated MultiplicationAn exponent is a smaller-sized number which appears to the right and slightly above a number. Read more...iWorksheets :3Study Guides :1
Exponential & Scientific NotationExponential notation is shorten way of expressing a large number using exponents. Read more...iWorksheets :6Study Guides :1Vocabulary :1
Order of OperationsA numerical expression is a phrase which represents a number. Read more...iWorksheets :7Study Guides :1
Evaluate ExponentsEvaluating an expression containing a number with an exponent means to write the repeated multiplication form and perform the operation Read more...iWorksheets :3Study Guides :1
Repeated Multiplication to ExponentsThe result of raising a number to a power is the same number that would be obtained by multiplying the base number together the number of times that is equal to the exponent. Read more...iWorksheets :3Study Guides :1
ExponentsThe exponent represents the number of times to multiply the number, or base. When a number is represented in this way it is called a power. Read more...iWorksheets :3Study Guides :1
Exponents, Factors and FractionsIn a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :4Study Guides :1
KY.6.EE.2. Write, read and evaluate expressions in which letters stand for numbers. (MP.1, MP.3, MP.4)
KY.6.EE.2.a. Write expressions that record operations with numbers and with letters standing for numbers.
Simple AlgebraSimple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1
Introduction to AlgebraAlgebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
KY.6.EE.2.c. Evaluate expressions for specific values of their variables, including values that are non-negative rational numbers. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations).
FormulasThe formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1
Simple AlgebraSimple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1
Algebraic EquationsFreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1

Cluster: Reason about and solve one-variable equation and inequalities.

KY.6.EE.5. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. (MP.1, MP.2, MP.7)
AlgebraAlgebra is the study of mathematical symbols and the rules for manipulating these symbols Read more...iWorksheets :4Study Guides :1Vocabulary :1
One & Two Step EquationsAn algebraic equation is an expression in which a letter represents an unknown number Read more...iWorksheets :3Study Guides :1
Algebraic EquationsFreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1
Introduction to AlgebraAlgebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
Equations and InequalitiesAlgebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :5Study Guides :1
Using IntegersIntegers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1
Decimal OperationsDecimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets :3Study Guides :1
Fraction OperationsFraction operations are the processes of adding, subtracting, multiplying and dividing fractions and mixed numbers. A mixed number is a fraction with a whole number. Adding fractions is common in many everyday events, such as making a recipe and measuring wood. In order to add and subtract fractions, the fractions must have the same denominator. Read more...iWorksheets :3Study Guides :1
Introduction to PercentWhat Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets :4Study Guides :1
Algebraic EquationsWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. When algebraic equations are written in words, the words must be changed into the appropriate numbers and variable in order to solve. Read more...iWorksheets :5Study Guides :1
Algebraic InequalitiesFreeAlgebraic inequalities are mathematical equations that compare two quantities using these criteria: greater than, less than, less than or equal to, greater than or equal to. The only rule of inequalities that must be remembered is that when a variable is multiplied or divided by a negative number the sign is reversed. Read more...iWorksheets :3Study Guides :1
KY.6.EE.6. Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or depending on the purpose at hand, any number in a specified set. (MP.2, MP.6)
Simple AlgebraSimple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1
Introduction to AlgebraAlgebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
KY.6.EE.7. Solve real-world and mathematical problems by writing and solving equations of the form x+p=q and px=q for cases in which p, q and x are all nonnegative rational numbers. (MP.1, MP.2, MP.3, MP.4)
AlgebraAlgebra is the study of mathematical symbols and the rules for manipulating these symbols Read more...iWorksheets :4Study Guides :1Vocabulary :1
Simple AlgebraSimple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1
Algebraic EquationsFreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1
Introduction to AlgebraAlgebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
Equations and InequalitiesAlgebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :5Study Guides :1
KY.6.EE.8. Write an inequality of the form x&gt;c, x&lt;cm x≥c, or x≤c to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of these forms have infinitely many solutions; represent solutions of such inequalities on vertical and horizontal number lines. (MP.3, MP.7)
Equations and InequalitiesAlgebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :5Study Guides :1
Algebraic InequalitiesFreeAlgebraic inequalities are mathematical equations that compare two quantities using these criteria: greater than, less than, less than or equal to, greater than or equal to. The only rule of inequalities that must be remembered is that when a variable is multiplied or divided by a negative number the sign is reversed. Read more...iWorksheets :3Study Guides :1

Cluster: Represent and analyze quantitative relationships between dependent and independent variables.

KY.6.EE.9. Use variables to represent two quantities in a real-world problem that changes in relationship to one another. (MP.3, MP.4, MP.7)
KY.6.EE.9.b. Write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable.
Simple AlgebraSimple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1
Introduction to AlgebraAlgebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1

Geometry

Cluster: Solve real-world and mathematical problems involving area, surface area and volume.

KY.6.G.2. Find the volume of a right rectangular prism with rational number edge lengths. Apply the formulas V=lwh and V=Bh to find volumes of right rectangular prisms with rational number edge lengths in the context of solving real-world and mathematical problems. (MP.2, MP.5, MP.6)
VolumeVolume measures the amount a solid figure can hold. Read more...iWorksheets :3Study Guides :1
Finding VolumeVolume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1
KY.6.G.3. Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems. (MP.4, MP.5, MP.6)
Plot PointsYou use plot points to place a point on a coordinate plane by using X and Y coordinates to draw on a coordinate grid. Read more...iWorksheets :3Study Guides :1Vocabulary :1
Area of Coordinate PolygonsCalculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1
KY.6.G.4. Classify three-dimensional figures including cubes, prisms, pyramids, cones and spheres. (MP.2, MP.3)
Finding VolumeVolume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1

Statistics and Probability

Cluster: Develop understanding of statistical variability.

KY.6.SP.3. Recognize that a measure of center for a numerical data set summarizes all of its values with a single number to describe a typical value, while a measure of variation describes how the values in the distribution vary. (MP.2., MP.5, MP.6)
StatisticsA statistic is a collection of numbers related to a specific topic. Read more...iWorksheets :6Study Guides :1
StatisticsThe statistical mode is the number that occurs most frequently in a set of numbers. Read more...iWorksheets :3Study Guides :1
Data AnalysisCollecting Data. Data = information. You can collect data from other people using polls and surveys. Recording Data. You can record the numerical data you collected on a chart or graph: bar graphs, pictographs, line graphs, pie charts, column charts. Read more...iWorksheets :4Study Guides :1
Organizing DataThe data can be organized into groups, and evaluated. Mean, mode, median and range are different ways to evaluate data. The mean is the average of the data. The mode refers to the number that occurs the most often in the data. The median is the middle number when the data is arranged in order from lowest to highest. The range is the difference in numbers when the lowest number is subtracted from the highest number. Data can be organized into a table, such as a frequency table. Read more...iWorksheets :3Study Guides :1

Cluster: Summarize and describe distributions.

KY.6.SP.5. Summarize numerical data sets in relation to their context, such as by: (MP.3, MP.7)
KY.6.SP.5.c. Determining quantitative measures of center (median and/or mean) to describe distribution of numerical data.
StatisticsA statistic is a collection of numbers related to a specific topic. Read more...iWorksheets :6Study Guides :1
StatisticsThe statistical mode is the number that occurs most frequently in a set of numbers. Read more...iWorksheets :3Study Guides :1
Data AnalysisCollecting Data. Data = information. You can collect data from other people using polls and surveys. Recording Data. You can record the numerical data you collected on a chart or graph: bar graphs, pictographs, line graphs, pie charts, column charts. Read more...iWorksheets :4Study Guides :1
Organizing DataThe data can be organized into groups, and evaluated. Mean, mode, median and range are different ways to evaluate data. The mean is the average of the data. The mode refers to the number that occurs the most often in the data. The median is the middle number when the data is arranged in order from lowest to highest. The range is the difference in numbers when the lowest number is subtracted from the highest number. Data can be organized into a table, such as a frequency table. Read more...iWorksheets :3Study Guides :1
Standards

NewPath Learning resources are fully aligned to US Education Standards. Select a standard below to view correlations to your selected resource:

Alabama Courses of StudyAlaska Content and Performance StandardsArizona's College and Career Ready StandardsArkansas Curriculum FrameworksCalifornia Content StandardsColorado Academic Standards (CAS)Common Core State StandardsConnecticut Core StandardsDelaware Standards and InstructionFlorida StandardsGeorgia Standards of ExcellenceHawaii Content and Performance StandardsIdaho Content StandardsIllinois Learning StandardsIndiana Academic StandardsIowa CoreKansas Academic StandardsKentucky Academic StandardsLouisiana Academic StandardsMaine Learning ResultsMaryland College and Career-Ready StandardsMaryland StandardsMassachusetts Curriculum FrameworksMichigan Academic StandardsMinnesota Academic StandardsMississippi College & Career Readiness StandardsMissouri Learning StandardsMontana Content StandardsNational STEM StandardsNebraska Core Academic Content StandardsNevada Academic Content StandardsNew Hampshire College and Career Ready StandardsNew Jersey Common Core StandardsNew Jersey Student Learning StandardsNew Mexico Content StandardsNew York State Learning Standards and Core CurriculumNorth Carolina Standard Course of StudyNorth Dakota Academic Content StandardsOhio Learning StandardsOklahoma Academic StandardsOregon Academic Content StandardsPennsylvania Core and Academic StandardsRhode Island World-Class StandardsSouth Carolina Standards & LearningSouth Dakota Content StandardsTennessee Academic StandardsTexas Assessments of Academic Readiness (STAAR)Texas Essential Knowledge and Skills (TEKS)U.S. National StandardsUtah Core StandardsVermont Framework of Standards and LearningVirgin Islands Common Core StandardsVirginia Standards of LearningWashington DC Academic StandardsWashington State K–12 Learning Standards and GuidelinesWest Virginia College and Career Readiness StandardsWisconsin Academic StandardsWyoming Content and Performance Standards