**Estimation**Estimation is the process of rounding a number either up or down to the nearest place value requested. Estimation makes it easier to perform mathematical operations quickly. Read more...iWorksheets: 6Study Guides: 1**Probability**Probability word problems worksheets. Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an
event occurring is always between 0 and 1. The closer a probability is to 1, the more certain that an event will occur. Read more...iWorksheets: 3Study Guides: 1**Area and Circumference of Circles**FreeThe circumference of a circle is the distance around the outside. The area of a circle is the space contained within the circumference. It is measured in square units. Read more...iWorksheets: 6Study Guides: 1**Diameter of Circle**The diameter of a circle is a line segment that passes through the center of a circle connecting one side of the circle to the other. Read more...iWorksheets: 3Study Guides: 1**Perimeter**A perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. Read more...iWorksheets: 3Study Guides: 1**Add/Subtract Fractions**Adding or substracting fractions means to add or subtract the numerators and write the sum over the common denominator. Read more...iWorksheets: 9Study Guides: 1**Division**Division is a mathematical operation is which a number, called a dividend
is divided by another number, called a divisor to get a result, called a
quotient. Read more...iWorksheets: 3Study Guides: 1**Exponents**The exponent represents the number of times to
multiply the number, or base. When a number is represented in this way it is called a power. Read more...iWorksheets: 4Study Guides: 1**Multiplication**Multiplication is a mathematical operation in which numbers, called factors, are multiplied together to get a result, called a product. Multiplication can be used with numbers or decimals of any size. Read more...iWorksheets: 3Study Guides: 1**Simplify Fractions**Simplifying fractions is the process of reducing fractions and putting them into their lowest terms. Read more...iWorksheets: 3Study Guides: 1**Evaluate Exponents**Evaluating an expression containing a number with an exponent
means to write the repeated multiplication form and perform the
operation Read more...iWorksheets: 3Study Guides: 1**Repeated Multiplication to Exponents**The result of raising a number to a power is the same number that would be obtained by multiplying the base number together the number of times that is equal to the exponent. Read more...iWorksheets: 3Study Guides: 1**Whole Numbers to Trillions**The number system we use is based on a place value system. Although
there are only 10 different digits in this system, it is possible to order them in so many variations that the numbers represented are infinite. Read more...iWorksheets: 4Study Guides: 1### TX.111.26. Grade 6, Adopted 2012.

#### 6.2. Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to:

##### 6.2 (D) Order a set of rational numbers arising from mathematical and real-world contexts.

**Fractions/Decimals**Any fraction can be changed into a decimal and any decimal can be changed into a fraction. Read more...iWorksheets :3Study Guides :1**Ordering Decimals**When putting decimals in order from least to greatest, we must look at
the highest place value first. Read more...iWorksheets :7Study Guides :1Vocabulary :1**Compare and Order Fractions**When comparing two fractions that have a common denominator, you can looks at the numerators to decide which fraction is greater Read more...iWorksheets :4Study Guides :1Vocabulary :1**Ordering Fractions**The order of rational numbers depends on their relationship to each other and to zero. Rational numbers can be dispersed along a number line in both directions from zero. Read more...iWorksheets :6Study Guides :1**Ordering Fractions**A fraction consists of two numbers separated by a line - numerator and denominator. To order fractions with like numerators, look at the denominators and compare them two at a time. The fraction with the smaller denominator is the larger fraction. Read more...iWorksheets :3Study Guides :1**Fractions/Decimals**How to convert fractions to decimals: Divide the denominator (the bottom part) into the numerator (the top part). Read more...iWorksheets :3Study Guides :1**Rational and Irrational Numbers**A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. An irrational number is a number that cannot be made into a fraction. Decimals that do not repeat or end are irrational numbers. Pi is an irrational number. Read more...iWorksheets :3Study Guides :1**Exponents, Factors and Fractions**FreeIn a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :8Study Guides :1#### 6.3. Number and operations. The student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions. The student is expected to:

##### 6.3 (A) Recognize that dividing by a rational number and multiplying by its reciprocal result in equivalent values.

**Multiply / Divide Fractions**FreeTo multiply two fractions with unlike denominators, multiply the numerators and multiply the denominators. It is unnecessary to change the denominators for this operation. Read more...iWorksheets :6Study Guides :1**Fraction Operations**Fraction operations are the processes of adding, subtracting, multiplying and dividing fractions and mixed numbers. A mixed number is a fraction with a whole number. Adding fractions is common in many everyday events, such as making a recipe and measuring wood. In order to add and subtract fractions, the fractions must have the same denominator. Read more...iWorksheets :3Study Guides :1##### 6.3 (C) Represent integer operations with concrete models and connect the actions with the models to standardized algorithms.

**Positive & Negative Integers**Positive integers are all the whole numbers greater than zero. Negative integers are all the opposites of these whole numbers, numbers that are less than zero. Zero is considered neither positive nor negative Read more...iWorksheets :4Study Guides :1**Using Integers**Integers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive
integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1**Decimal Operations**Decimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets :3Study Guides :1##### 6.3 (D) Add, subtract, multiply, and divide integers fluently.

**Using Integers**Integers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive
integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1##### 6.3 (E) Multiply and divide positive rational numbers fluently.

**Multiply / Divide Fractions**FreeTo multiply two fractions with unlike denominators, multiply the numerators and multiply the denominators. It is unnecessary to change the denominators for this operation. Read more...iWorksheets :6Study Guides :1**Multiply Fractions**Multiplying fractions is the operation of multiplying two or more fractions together to find a product. Read more...iWorksheets :3Study Guides :1**Add/Subtract/Multiply/Divide Decimals**You add/subtract/multiply/divide decimals the same way you add/subtract/multiply/divide whole numbers BUT you also need to place the decimal in the correct spot. When multiplying decimals, the decimals may or may NOT be lined up in the multiplication problem. Read more...iWorksheets :10Study Guides :1Vocabulary :1**Decimal Operations**Decimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets :3Study Guides :1**Fraction Operations**Fraction operations are the processes of adding, subtracting, multiplying and dividing fractions and mixed numbers. A mixed number is a fraction with a whole number. Adding fractions is common in many everyday events, such as making a recipe and measuring wood. In order to add and subtract fractions, the fractions must have the same denominator. Read more...iWorksheets :3Study Guides :1#### 6.4. Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations. The student is expected to:

##### 6.4 (B) Apply qualitative and quantitative reasoning to solve prediction and comparison of real-world problems involving ratios and rates.

**Numerical Proportions**Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1##### 6.4 (D) Give examples of rates as the comparison by division of two quantities having different attributes, including rates as quotients.

**Numerical Proportions**Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1##### 6.4 (E) Represent ratios and percents with concrete models, fractions, and decimals.

**Percents**A percentage is a number or ratio expressed as a fraction of 100. Read more...iWorksheets :6Study Guides :1Vocabulary :1**Percent, Rate, Base**A percent is a way of comparing a number with 100. Percents are usually written with a percent sign. To solve a percent problem, multiply the value by the percent using
one of the representations for the percent. Read more...iWorksheets :3Study Guides :1**Ratio**Ratios are used to make a comparison between two things. Read more...iWorksheets :9Study Guides :1Vocabulary :1**Ratio**A ratio is a comparison of two numbers. The two numbers must have
the same unit in order to be compared. Read more...iWorksheets :3Study Guides :1**Percentage**The term percent refers to a fraction in which the denominator is 100.
It is a way to compare a number with 100. Read more...iWorksheets :6Study Guides :1**Simple Proportions**A proportion is a statement that two ratios are equal. A ratio is a pair of numbers used to show a comparison. To solve a proportion, calculate equivalent fractions in order to be sure the two fractions (ratios) are equal. Read more...iWorksheets :3Study Guides :1**Multiple Representation of Rational Numbers**What are multiple representations of rational numbers? A rational number represents a value or a part of a value. Rational numbers can be written as integers, fractions, decimals, and percents.The different representations for any given rational number are all equivalent. Read more...iWorksheets :3Study Guides :1**Numerical Proportions**Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1**Introduction to Percent**What Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets :4Study Guides :1**Applying Percents**Applying percents is a term that refers to the different ways that percents can be used. The percent of change refers to the percent an amount either increases or decreases based on the previous amounts or numbers. Applying percents also means to calculate simple interest using the interest equation, I = P · r · t, where P is the principal; r is the rate and t is the time. Read more...iWorksheets :3Study Guides :1##### 6.4 (G) Generate equivalent forms of fractions, decimals, and percents using real-world problems, including problems that involve money.

**Percents**A percentage is a number or ratio expressed as a fraction of 100. Read more...iWorksheets :6Study Guides :1Vocabulary :1**Percentage**The term percent refers to a fraction in which the denominator is 100.
It is a way to compare a number with 100. Read more...iWorksheets :6Study Guides :1**Multiple Representation of Rational Numbers**What are multiple representations of rational numbers? A rational number represents a value or a part of a value. Rational numbers can be written as integers, fractions, decimals, and percents.The different representations for any given rational number are all equivalent. Read more...iWorksheets :3Study Guides :1**Rational and Irrational Numbers**A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. An irrational number is a number that cannot be made into a fraction. Decimals that do not repeat or end are irrational numbers. Pi is an irrational number. Read more...iWorksheets :3Study Guides :1**Introduction to Percent**What Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets :4Study Guides :1##### 6.4 (H) Convert units within a measurement system, including the use of proportions and unit rates.

**Measurement**FreeThere are many units of measurement: inches, feet, yards, miles,
millimeters, meters, seconds, minutes, hours, cups, pints, quarts,
gallons, ounces, pounds, etc Read more...iWorksheets :6Study Guides :1#### 6.5. Proportionality. The student applies mathematical process standards to solve problems involving proportional relationships. The student is expected to:

##### 6.5 (A) Represent mathematical and real-world problems involving ratios and rates using scale factors, tables, graphs, and proportions.

**Ratio**Ratios are used to make a comparison between two things. Read more...iWorksheets :9Study Guides :1Vocabulary :1**Ratio**A ratio is a comparison of two numbers. The two numbers must have
the same unit in order to be compared. Read more...iWorksheets :3Study Guides :1**Simple Proportions**A proportion is a statement that two ratios are equal. A ratio is a pair of numbers used to show a comparison. To solve a proportion, calculate equivalent fractions in order to be sure the two fractions (ratios) are equal. Read more...iWorksheets :3Study Guides :1**Numerical Proportions**Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1##### 6.5 (B) Solve real-world problems to find the whole given a part and the percent, to find the part given the whole and the percent, and to find the percent given the part and the whole, including the use of concrete and pictorial models.

**Applying Percents**Applying percents is a term that refers to the different ways that percents can be used. The percent of change refers to the percent an amount either increases or decreases based on the previous amounts or numbers. Applying percents also means to calculate simple interest using the interest equation, I = P · r · t, where P is the principal; r is the rate and t is the time. Read more...iWorksheets :3Study Guides :1##### 6.5 (C) Use equivalent fractions, decimals, and percents to show equal parts of the same whole.

**Percents**A percentage is a number or ratio expressed as a fraction of 100. Read more...iWorksheets :6Study Guides :1Vocabulary :1**Percentage**The term percent refers to a fraction in which the denominator is 100.
It is a way to compare a number with 100. Read more...iWorksheets :6Study Guides :1**Multiple Representation of Rational Numbers**What are multiple representations of rational numbers? A rational number represents a value or a part of a value. Rational numbers can be written as integers, fractions, decimals, and percents.The different representations for any given rational number are all equivalent. Read more...iWorksheets :3Study Guides :1**Introduction to Percent**What Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets :4Study Guides :1#### 6.6. Expressions, equations, and relationships. The student applies mathematical process standards to use multiple representations to describe algebraic relationships. The student is expected to:

##### 6.6 (B) Write an equation that represents the relationship between independent and dependent quantities from a table.

**Simple Algebra**Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1**Introduction to Algebra**Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :4Study Guides :1##### 6.6 (C) Represent a given situation using verbal descriptions, tables, graphs, and equations in the form y = kx or y = x + b.

**Simple Algebra**Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1**Introduction to Algebra**Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :4Study Guides :1#### 6.7. Expressions, equations, and relationships. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:

##### 6.7 (A) Generate equivalent numerical expressions using order of operations, including whole number exponents and prime factorization.

**Number Patterns**A number pattern is a group of numbers that are related to one another in some sort of pattern. Finding a pattern is a simpler way to solve a problem. Read more...iWorksheets :3Study Guides :1**Order of Operations**FreeRules of Order of Operations: 1st: Compute all operations inside of parentheses. 2nd: Compute all work with exponents. 3rd: Compute all multiplication and division from left to right. 4th: Compute all addition and subtraction from left to right. Read more...iWorksheets :4Study Guides :1**Using Integers**Integers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive
integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1**Exponents, Factors and Fractions**FreeIn a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :8Study Guides :1##### 6.7 (B) Distinguish between expressions and equations verbally, numerically, and algebraically.

**Simple Algebra**Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1**Introduction to Algebra**Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :4Study Guides :1**Equations and Inequalities**Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :6Study Guides :1##### 6.7 (D) Generate equivalent expressions using the properties of operations: inverse, identity, commutative, associative, and distributive properties.

**Algebra**Algebra is the study of mathematical symbols and the rules for manipulating these symbols Read more...iWorksheets :7Study Guides :1Vocabulary :1**Distributive Property**The distributive property offers a choice in multiplication of two ways to treat the addends in the equation. We are multiplying a sum by a factor which results in the same product as multiplying each addend by the factor and then adding the products. Read more...iWorksheets :3Study Guides :1**Commutative/Associative Properties**The
commutative property allows us to change the order of the
numbers
without changing the outcome of the problem. The
associative property
allows us to change the grouping of the
numbers. Read more...iWorksheets :4Study Guides :1**Formulas**The formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1**Simple Algebra**Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1**Algebraic Equations**FreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1**Introduction to Algebra**Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :4Study Guides :1**Equations and Inequalities**Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :6Study Guides :1**Using Integers**Integers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive
integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1**Algebraic Equations**What are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. When algebraic equations are written in words, the words must be changed into the appropriate numbers and variable in order to solve. Read more...iWorksheets :5Study Guides :1**Algebraic Inequalities**FreeAlgebraic inequalities are mathematical equations that compare two quantities using these criteria: greater than, less than, less than or equal to, greater than or equal to. The only rule of inequalities that must be remembered is that when a variable is multiplied or divided by a negative number the sign is reversed. Read more...iWorksheets :3Study Guides :1**Introduction to Functions**A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :6Study Guides :1**Nonlinear Functions and Set Theory**A function can be in the form of y = mx + b. This is an equation of a line, so it is said to be a linear function. Nonlinear functions are functions that are not straight lines. Some examples of nonlinear functions are exponential functions
and parabolic functions. An exponential function, y = aˆx, is a curved line that gets closer to but does not touch the x-axis. A parabolic function, y = ax² + bx +c, is a U-shaped line that can either be facing up or facing down. Read more...iWorksheets :5Study Guides :1#### 6.8. Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to represent relationships and solve problems. The student is expected to:

##### 6.8 (C) Write equations that represent problems related to the area of rectangles, parallelograms, trapezoids, and triangles and volume of right rectangular prisms where dimensions are positive rational numbers.

**Volume**Volume measures the amount a solid figure can hold. Read more...iWorksheets :3Study Guides :1**Area**An area is the amount of surface a shape covers. <br>An area is measured in inches, feet, meters or centimeters. Read more...iWorksheets :3Study Guides :1**Area**Area is the number of square units needed to cover a flat surface. Read more...iWorksheets :3Study Guides :1**Exploring Area and Surface Area**Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the
base and h is the height. Read more...iWorksheets :4Study Guides :1**Finding Volume**Volume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1##### 6.8 (D) Determine solutions for problems involving the area of rectangles, parallelograms, trapezoids, and triangles and volume of right rectangular prisms where dimensions are positive rational numbers.

**Volume**Volume measures the amount a solid figure can hold. Read more...iWorksheets :3Study Guides :1**Area**An area is the amount of surface a shape covers. <br>An area is measured in inches, feet, meters or centimeters. Read more...iWorksheets :3Study Guides :1**Area**Area is the number of square units needed to cover a flat surface. Read more...iWorksheets :3Study Guides :1**Exploring Area and Surface Area**Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the
base and h is the height. Read more...iWorksheets :4Study Guides :1**Finding Volume**Volume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1#### 6.9. Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to represent situations. The student is expected to:

##### 6.9 (A) Write one-variable, one-step equations and inequalities to represent constraints or conditions within problems.

**Simple Algebra**Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1**Introduction to Algebra**Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :4Study Guides :1##### 6.9 (B) Represent solutions for one-variable, one-step equations and inequalities on number lines.

**Equations and Inequalities**Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :6Study Guides :1**Algebraic Inequalities**FreeAlgebraic inequalities are mathematical equations that compare two quantities using these criteria: greater than, less than, less than or equal to, greater than or equal to. The only rule of inequalities that must be remembered is that when a variable is multiplied or divided by a negative number the sign is reversed. Read more...iWorksheets :3Study Guides :1#### 6.10. Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to solve problems. The student is expected to:

##### 6.10 (A) Model and solve one-variable, one-step equations and inequalities that represent problems, including geometric concepts.

**Algebra**Algebra is the study of mathematical symbols and the rules for manipulating these symbols Read more...iWorksheets :7Study Guides :1Vocabulary :1**Simple Algebra**Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1**Algebraic Equations**FreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1**Introduction to Algebra**Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :4Study Guides :1**Equations and Inequalities**Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :6Study Guides :1**Algebraic Inequalities**FreeAlgebraic inequalities are mathematical equations that compare two quantities using these criteria: greater than, less than, less than or equal to, greater than or equal to. The only rule of inequalities that must be remembered is that when a variable is multiplied or divided by a negative number the sign is reversed. Read more...iWorksheets :3Study Guides :1#### 6.11. Measurement and data. The student applies mathematical process standards to use coordinate geometry to identify locations on a plane. The student is expected to graph points in all four quadrants using ordered pairs of rational numbers.

**Plot Points**You use plot points to place a point on a coordinate plane by using X and Y coordinates to draw on a coordinate grid. Read more...iWorksheets :5Study Guides :1Vocabulary :1**Coordinates**FreeThe use of coordinates pertains to graphing and the quadrants that are formed by the x and y-axis. Read more...iWorksheets :14Study Guides :1**Plotting Points**In a coordinate pair, the first number indicates the position of the
point along the horizontal axis of the grid. The second number
indicates the position of the point along the vertical axis. Read more...iWorksheets :4Study Guides :1Vocabulary :1**Area of Coordinate Polygons**Calculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1#### 6.12. Measurement and data. The student applies mathematical process standards to use numerical or graphical representations to analyze problems. The student is expected to:

##### 6.12 (B) Use the graphical representation of numeric data to describe the center, spread, and shape of the data distribution.

**Statistics**A statistic is a collection of numbers related to a specific topic. Read more...iWorksheets :6Study Guides :1**Statistics**The statistical mode is the number that occurs most frequently in a set of
numbers. Read more...iWorksheets :3Study Guides :1**Data Analysis**Collecting Data. Data = information. You can collect data from other people using polls and surveys. Recording Data. You can record the numerical data you collected on a chart or graph: bar graphs, pictographs, line graphs, pie charts, column charts. Read more...iWorksheets :6Study Guides :1**Organizing Data**The data can be organized into groups, and evaluated. Mean, mode, median and range are different ways to evaluate data. The mean is the average of the data. The mode refers to the number that occurs the most often in the data. The median is the middle number when the data is arranged in order from lowest to highest. The range is the difference in numbers when the lowest number is subtracted from the highest number. Data can be organized into a table, such as a frequency table. Read more...iWorksheets :3Study Guides :1##### 6.12 (C) Summarize numeric data with numerical summaries, including the mean and median (measures of center) and the range and interquartile range (IQR) (measures of spread), and use these summaries to describe the center, spread, and shape of the data distribution.

**Statistics**A statistic is a collection of numbers related to a specific topic. Read more...iWorksheets :6Study Guides :1**Statistics**The statistical mode is the number that occurs most frequently in a set of
numbers. Read more...iWorksheets :3Study Guides :1**Data Analysis**Collecting Data. Data = information. You can collect data from other people using polls and surveys. Recording Data. You can record the numerical data you collected on a chart or graph: bar graphs, pictographs, line graphs, pie charts, column charts. Read more...iWorksheets :6Study Guides :1**Organizing Data**The data can be organized into groups, and evaluated. Mean, mode, median and range are different ways to evaluate data. The mean is the average of the data. The mode refers to the number that occurs the most often in the data. The median is the middle number when the data is arranged in order from lowest to highest. The range is the difference in numbers when the lowest number is subtracted from the highest number. Data can be organized into a table, such as a frequency table. Read more...iWorksheets :3Study Guides :1##### 6.12 (D) Summarize categorical data with numerical and graphical summaries, including the mode, the percent of values in each category (relative frequency table), and the percent bar graph, and use these summaries to describe the data distribution.

**Statistics**A statistic is a collection of numbers related to a specific topic. Read more...iWorksheets :6Study Guides :1**Statistics**The statistical mode is the number that occurs most frequently in a set of
numbers. Read more...iWorksheets :3Study Guides :1**Organizing Data**The data can be organized into groups, and evaluated. Mean, mode, median and range are different ways to evaluate data. The mean is the average of the data. The mode refers to the number that occurs the most often in the data. The median is the middle number when the data is arranged in order from lowest to highest. The range is the difference in numbers when the lowest number is subtracted from the highest number. Data can be organized into a table, such as a frequency table. Read more...iWorksheets :3Study Guides :1#### 6.13. Measurement and data. The student applies mathematical process standards to use numerical or graphical representations to solve problems. The student is expected to:

##### 6.13 (A) Interpret numeric data summarized in dot plots, stem-and-leaf plots, histograms, and box plots.

**Tables**Tables refer to the different types of diagram used to display data. <br>There are many types of tables such as data table, frequency table, line chart and stern-and-leaf plot. Read more...iWorksheets :3Study Guides :1**Graphs**FreeA graph is a diagram that shows information in an organized way. Read more...iWorksheets :15Study Guides :1**Graphs and Tables**Using tables and graphs is a way people can interpret data. Data means information. So interpreting data just means working out what information is telling you. Information is sometimes shown in tables, charts and graphs to make the information easier to read. Read more...iWorksheets :3Study Guides :1**Analyzing, Graphing and Displaying Data**There are many types of graphs such as, bar graphs, histograms and line graphs. A bar graph compares data in categories and uses bars, either vertical or horizontal. A histogram is similar to a bar graph, but with histograms the bars touch each other where with bar graphs the bars do not touch each other. A line graph is useful for graphing how data changes over time. With a line graph, data is plotted as points and lines are drawn to connect the points to show how the data changes. Read more...iWorksheets :6Study Guides :1 Standards

### NewPath Learning resources are fully aligned to US Education Standards. Select a standard below to view correlations to your selected resource: