Nebraska Core Academic Content Standards for Sixth Grade Math

Add/Subtract Fractions
Adding or substracting fractions means to add or subtract the numerators and write the sum over the common denominator. Read more...iWorksheets: 7Study Guides: 1
Adding Fractions
Adding fractions is the operation of adding two or more different fractions. Read more...iWorksheets: 3Study Guides: 1
Commutative/Associative Properties
The commutative property allows us to change the order of the numbers without changing the outcome of the problem. The associative property allows us to change the grouping of the numbers. Read more...iWorksheets: 4Study Guides: 1
Estimation
Estimation is the process of rounding a number either up or down to the nearest place value requested. Estimation makes it easier to perform mathematical operations quickly. Read more...iWorksheets: 6Study Guides: 1
Measurement
FreeThere are many units of measurement: inches, feet, yards, miles, millimeters, meters, seconds, minutes, hours, cups, pints, quarts, gallons, ounces, pounds, etc Read more...iWorksheets: 6Study Guides: 1
Multiplication
Multiplication is a mathematical operation in which numbers, called factors, are multiplied together to get a result, called a product. Multiplication can be used with numbers or decimals of any size. Read more...iWorksheets: 3Study Guides: 1
Percent, Rate, Base
A percent is a way of comparing a number with 100. Percents are usually written with a percent sign. To solve a percent problem, multiply the value by the percent using one of the representations for the percent. Read more...iWorksheets: 3Study Guides: 1
Perimeter
A perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. Read more...iWorksheets: 3Study Guides: 1
Simplify Fractions
Simplifying fractions is the process of reducing fractions and putting them into their lowest terms. Read more...iWorksheets: 3Study Guides: 1
Whole Numbers to Trillions
The number system we use is based on a place value system. Although there are only 10 different digits in this system, it is possible to order them in so many variations that the numbers represented are infinite. Read more...iWorksheets: 3Study Guides: 1

NE.MA.6.1. NUMBER: Students will communicate number sense concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

MA.6.1.1. Numeric Relationships: Students will demonstrate, represent, and show relationships among fractions, decimals, percents, and integers within the base-ten number system.

MA.6.1.1.a. Determine common factors and common multiples using prime factorization of numbers with and without exponents.
Common Factors
Factors are two numbers multiplied together to get a product (an answer to a multiplication problem) Read more...iWorksheets :3Study Guides :1Vocabulary :1
Number Patterns
A number pattern is a group of numbers that are related to one another in some sort of pattern. Finding a pattern is a simpler way to solve a problem. Read more...iWorksheets :3Study Guides :1
Exponents, Factors and Fractions
In a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :4Study Guides :1
MA.6.1.1.b. Represent non-negative whole numbers using exponential notation.
Exponents to Repeated Multiplication
An exponent is a smaller-sized number which appears to the right and slightly above a number. Read more...iWorksheets :3Study Guides :1
Exponential & Scientific Notation
Exponential notation is shorten way of expressing a large number using exponents. Read more...iWorksheets :6Study Guides :1Vocabulary :1
Order of Operations
A numerical expression is a phrase which represents a number. Read more...iWorksheets :7Study Guides :1
Evaluate Exponents
Evaluating an expression containing a number with an exponent means to write the repeated multiplication form and perform the operation Read more...iWorksheets :3Study Guides :1
Repeated Multiplication to Exponents
The result of raising a number to a power is the same number that would be obtained by multiplying the base number together the number of times that is equal to the exponent. Read more...iWorksheets :3Study Guides :1
Exponents
The exponent represents the number of times to multiply the number, or base. When a number is represented in this way it is called a power. Read more...iWorksheets :3Study Guides :1
Exponents, Factors and Fractions
In a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :4Study Guides :1
MA.6.1.1.c. Compare and order rational numbers both on the number line and not on the number line.
Fractions/Decimals
Any fraction can be changed into a decimal and any decimal can be changed into a fraction. Read more...iWorksheets :3Study Guides :1
Ordering Decimals
When putting decimals in order from least to greatest, we must look at the highest place value first. Read more...iWorksheets :6Study Guides :1Vocabulary :1
Compare and Order Fractions
When comparing two fractions that have a common denominator, you can looks at the numerators to decide which fraction is greater Read more...iWorksheets :3Study Guides :1Vocabulary :1
Ordering Fractions
The order of rational numbers depends on their relationship to each other and to zero. Rational numbers can be dispersed along a number line in both directions from zero. Read more...iWorksheets :6Study Guides :1
Ordering Fractions
A fraction consists of two numbers separated by a line - numerator and denominator. To order fractions with like numerators, look at the denominators and compare them two at a time. The fraction with the smaller denominator is the larger fraction. Read more...iWorksheets :3Study Guides :1
Fractions/Decimals
How to convert fractions to decimals: Divide the denominator (the bottom part) into the numerator (the top part). Read more...iWorksheets :3Study Guides :1
Less Than, Greater Than
Compare fractions and decimals using <, >, or =. Read more...iWorksheets :3Study Guides :1
Rational and Irrational Numbers
A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. An irrational number is a number that cannot be made into a fraction. Decimals that do not repeat or end are irrational numbers. Pi is an irrational number. Read more...iWorksheets :3Study Guides :1
Exponents, Factors and Fractions
In a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :4Study Guides :1
MA.6.1.1.d. Convert among fractions, decimals, and percents using multiple representations.
Percents
A percentage is a number or ratio expressed as a fraction of 100. Read more...iWorksheets :6Study Guides :1Vocabulary :1
Percentage
The term percent refers to a fraction in which the denominator is 100. It is a way to compare a number with 100. Read more...iWorksheets :6Study Guides :1
Multiple Representation of Rational Numbers
What are multiple representations of rational numbers? A rational number represents a value or a part of a value. Rational numbers can be written as integers, fractions, decimals, and percents.The different representations for any given rational number are all equivalent. Read more...iWorksheets :3Study Guides :1
Rational and Irrational Numbers
A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. An irrational number is a number that cannot be made into a fraction. Decimals that do not repeat or end are irrational numbers. Pi is an irrational number. Read more...iWorksheets :3Study Guides :1
Introduction to Percent
What Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets :4Study Guides :1
MA.6.1.1.e. Determine ratios from drawings, words, and manipulatives.
Proportions/Equivalent Fractions
Equivalent fractions represent the same ratio between two values. Read more...iWorksheets :3Study Guides :1
Ratio
Ratios are used to make a comparison between two things. Read more...iWorksheets :7Study Guides :1Vocabulary :1
Ratio
A ratio is a comparison of two numbers. The two numbers must have the same unit in order to be compared. Read more...iWorksheets :3Study Guides :1
Simple Proportions
A proportion is a statement that two ratios are equal. A ratio is a pair of numbers used to show a comparison. To solve a proportion, calculate equivalent fractions in order to be sure the two fractions (ratios) are equal. Read more...iWorksheets :3Study Guides :1
Numerical Proportions
Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1
MA.6.1.1.f. Explain and determine unit rates.
Numerical Proportions
Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1
MA.6.1.1.g. Model integers using drawings, words, manipulatives, number lines, and symbols.
Positive & Negative Integers
Positive integers are all the whole numbers greater than zero. Negative integers are all the opposites of these whole numbers, numbers that are less than zero. Zero is considered neither positive nor negative Read more...iWorksheets :4Study Guides :1
Using Integers
Integers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1
Decimal Operations
Decimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets :3Study Guides :1
MA.6.1.1.h. Compare and order integers and absolute value both on the number line and not on the number line.
Positive & Negative Integers
Positive integers are all the whole numbers greater than zero. Negative integers are all the opposites of these whole numbers, numbers that are less than zero. Zero is considered neither positive nor negative Read more...iWorksheets :4Study Guides :1

MA.6.1.2. Operations: Students will compute with fractions and decimals accurately.

MA.6.1.2.a. Multiply and divide non-negative fractions and mixed numbers.
Mixed Numbers
A mixed number has both a whole number and a fraction. Read more...iWorksheets :4Study Guides :1
Multiply / Divide Fractions
To multiply two fractions with unlike denominators, multiply the numerators and multiply the denominators. It is unnecessary to change the denominators for this operation. Read more...iWorksheets :4Study Guides :1
Multiply Fractions
Multiplying fractions is the operation of multiplying two or more fractions together to find a product. Read more...iWorksheets :3Study Guides :1
Fraction Operations
Fraction operations are the processes of adding, subtracting, multiplying and dividing fractions and mixed numbers. A mixed number is a fraction with a whole number. Adding fractions is common in many everyday events, such as making a recipe and measuring wood. In order to add and subtract fractions, the fractions must have the same denominator. Read more...iWorksheets :3Study Guides :1
MA.6.1.2.b. Evaluate expressions with positive exponents.
Exponents to Repeated Multiplication
An exponent is a smaller-sized number which appears to the right and slightly above a number. Read more...iWorksheets :3Study Guides :1
Order of Operations
A numerical expression is a phrase which represents a number. Read more...iWorksheets :7Study Guides :1
Evaluate Exponents
Evaluating an expression containing a number with an exponent means to write the repeated multiplication form and perform the operation Read more...iWorksheets :3Study Guides :1
Repeated Multiplication to Exponents
The result of raising a number to a power is the same number that would be obtained by multiplying the base number together the number of times that is equal to the exponent. Read more...iWorksheets :3Study Guides :1
Exponents
The exponent represents the number of times to multiply the number, or base. When a number is represented in this way it is called a power. Read more...iWorksheets :3Study Guides :1
Exponents, Factors and Fractions
In a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :4Study Guides :1
MA.6.1.2.c. Divide multi-digit whole numbers using the standard algorithm.
Division
Division is a mathematical operation is which a number, called a dividend is divided by another number, called a divisor to get a result, called a quotient. Read more...iWorksheets :3Study Guides :1
Division
Divide three-digit numbers by one- and two-digit numbers. Read more...iWorksheets :6Study Guides :1Vocabulary :1
MA.6.1.2.d. Add, subtract, multiply, and divide decimals using the standard algorithms.
Add/Subtract/Multiply/Divide Decimals
You add/subtract/multiply/divide decimals the same way you add/subtract/multiply/divide whole numbers BUT you also need to place the decimal in the correct spot. When multiplying decimals, the decimals may or may NOT be lined up in the multiplication problem. Read more...iWorksheets :10Study Guides :1Vocabulary :1
Decimal Operations
Decimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets :3Study Guides :1

NE.MA.6.2. ALGEBRA: Students will communicate algebraic concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

MA.6.2.1. Algebraic Relationships: Students will demonstrate, represent, and show relationships with expressions, equations, and inequalities.

MA.6.2.1.a. Create algebraic expressions (e.g., one operation, one variable as well as multiple operations, one variable) from word phrases.
Simple Algebra
Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1
Introduction to Algebra
Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
MA.6.2.1.b. Recognize and generate equivalent algebraic expressions involving distributive property and combining like terms.
Introduction to Algebra
Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1

MA.6.2.2. Algebraic Processes: Students will apply the operational properties when evaluating expressions and solving expressions, equations, and inequalities.

MA.6.2.2.a. Simplify expressions using the distributive property and combining like terms.
Distributive Property
The distributive property offers a choice in multiplication of two ways to treat the addends in the equation. We are multiplying a sum by a factor which results in the same product as multiplying each addend by the factor and then adding the products. Read more...iWorksheets :3Study Guides :1
Introduction to Algebra
Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
Using Integers
Integers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1
MA.6.2.2.b. Use substitution to determine if a given value for a variable makes an equation or inequality true.
Formulas
The formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1
Simple Algebra
Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1
Algebraic Equations
FreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1
MA.6.2.2.c. Evaluate numerical expressions, including absolute value and exponents, with respect to order of operations.
Algebra
Algebra is the study of mathematical symbols and the rules for manipulating these symbols Read more...iWorksheets :4Study Guides :1Vocabulary :1
Order of Operations
A numerical expression is a phrase which represents a number. Read more...iWorksheets :7Study Guides :1
Formulas
The formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1
One & Two Step Equations
An algebraic equation is an expression in which a letter represents an unknown number Read more...iWorksheets :3Study Guides :1
Simple Algebra
Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1
Algebraic Equations
FreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1
Introduction to Algebra
Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
Equations and Inequalities
Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :5Study Guides :1
Algebraic Equations
What are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. When algebraic equations are written in words, the words must be changed into the appropriate numbers and variable in order to solve. Read more...iWorksheets :4Study Guides :1
Algebraic Inequalities
FreeAlgebraic inequalities are mathematical equations that compare two quantities using these criteria: greater than, less than, less than or equal to, greater than or equal to. The only rule of inequalities that must be remembered is that when a variable is multiplied or divided by a negative number the sign is reversed. Read more...iWorksheets :3Study Guides :1
Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1
Nonlinear Functions and Set Theory
A function can be in the form of y = mx + b. This is an equation of a line, so it is said to be a linear function. Nonlinear functions are functions that are not straight lines. Some examples of nonlinear functions are exponential functions and parabolic functions. An exponential function, y = aˆx, is a curved line that gets closer to but does not touch the x-axis. A parabolic function, y = ax² + bx +c, is a U-shaped line that can either be facing up or facing down. Read more...iWorksheets :4Study Guides :1
MA.6.2.2.d. Given the value of the variable, evaluate algebraic expressions (which may include absolute value) with respect to order of operations (non-negative rational numbers).
Algebra
Algebra is the study of mathematical symbols and the rules for manipulating these symbols Read more...iWorksheets :4Study Guides :1Vocabulary :1
Order of Operations
A numerical expression is a phrase which represents a number. Read more...iWorksheets :7Study Guides :1
Formulas
The formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1
One & Two Step Equations
An algebraic equation is an expression in which a letter represents an unknown number Read more...iWorksheets :3Study Guides :1
Simple Algebra
Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1
Algebraic Equations
FreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1
Introduction to Algebra
Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
Equations and Inequalities
Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :5Study Guides :1
Algebraic Equations
What are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. When algebraic equations are written in words, the words must be changed into the appropriate numbers and variable in order to solve. Read more...iWorksheets :4Study Guides :1
Algebraic Inequalities
FreeAlgebraic inequalities are mathematical equations that compare two quantities using these criteria: greater than, less than, less than or equal to, greater than or equal to. The only rule of inequalities that must be remembered is that when a variable is multiplied or divided by a negative number the sign is reversed. Read more...iWorksheets :3Study Guides :1
Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1
Nonlinear Functions and Set Theory
A function can be in the form of y = mx + b. This is an equation of a line, so it is said to be a linear function. Nonlinear functions are functions that are not straight lines. Some examples of nonlinear functions are exponential functions and parabolic functions. An exponential function, y = aˆx, is a curved line that gets closer to but does not touch the x-axis. A parabolic function, y = ax² + bx +c, is a U-shaped line that can either be facing up or facing down. Read more...iWorksheets :4Study Guides :1
MA.6.2.2.e. Solve one-step equations with non-negative rational numbers using addition, subtraction, multiplication and division.
Algebra
Algebra is the study of mathematical symbols and the rules for manipulating these symbols Read more...iWorksheets :4Study Guides :1Vocabulary :1
Algebraic Equations
FreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1
Introduction to Algebra
Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
Equations and Inequalities
Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :5Study Guides :1
MA.6.2.2.g. Represent inequalities on a number line (e.g., graph x > 3).
Equations and Inequalities
Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :5Study Guides :1
Algebraic Inequalities
FreeAlgebraic inequalities are mathematical equations that compare two quantities using these criteria: greater than, less than, less than or equal to, greater than or equal to. The only rule of inequalities that must be remembered is that when a variable is multiplied or divided by a negative number the sign is reversed. Read more...iWorksheets :3Study Guides :1

MA.6.2.3. Applications: Students will solve real-world problems involving ratios, unit rates, and percents.

MA.6.2.3.a. Write equations (e.g., one operation, one variable) to represent real-world problems involving non-negative rational numbers.
Simple Algebra
Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1
Introduction to Algebra
Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
MA.6.2.3.c. Solve real-world problems involving percents of numbers.
Applying Percents
Applying percents is a term that refers to the different ways that percents can be used. The percent of change refers to the percent an amount either increases or decreases based on the previous amounts or numbers. Applying percents also means to calculate simple interest using the interest equation, I = P · r · t, where P is the principal; r is the rate and t is the time. Read more...iWorksheets :3Study Guides :1
MA.6.2.3.d. Solve real-world problems using ratios and unit rates.
Proportions/Equivalent Fractions
Equivalent fractions represent the same ratio between two values. Read more...iWorksheets :3Study Guides :1
Ratio
Ratios are used to make a comparison between two things. Read more...iWorksheets :7Study Guides :1Vocabulary :1
Ratio
A ratio is a comparison of two numbers. The two numbers must have the same unit in order to be compared. Read more...iWorksheets :3Study Guides :1
Simple Proportions
A proportion is a statement that two ratios are equal. A ratio is a pair of numbers used to show a comparison. To solve a proportion, calculate equivalent fractions in order to be sure the two fractions (ratios) are equal. Read more...iWorksheets :3Study Guides :1
Numerical Proportions
Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1

NE.MA.6.3. GEOMETRY: Students will communicate geometric concepts and measurement concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

MA.6.3.2. Coordinate Geometry: Students will determine location, orientation, and relationships on the coordinate plane.

MA.6.3.2.a. Identify the ordered pair of a given point in the coordinate plane.
Plot Points
You use plot points to place a point on a coordinate plane by using X and Y coordinates to draw on a coordinate grid. Read more...iWorksheets :3Study Guides :1Vocabulary :1
Coordinates
The use of coordinates pertains to graphing and the quadrants that are formed by the x and y-axis. Read more...iWorksheets :3Study Guides :1
Plotting Points
In a coordinate pair, the first number indicates the position of the point along the horizontal axis of the grid. The second number indicates the position of the point along the vertical axis. Read more...iWorksheets :4Study Guides :1Vocabulary :1
Graphs and Tables
Using tables and graphs is a way people can interpret data. Data means information. So interpreting data just means working out what information is telling you. Information is sometimes shown in tables, charts and graphs to make the information easier to read. Read more...iWorksheets :3Study Guides :1
Area of Coordinate Polygons
Calculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1
MA.6.3.2.b. Plot the location of an ordered pair in the coordinate plane.
Plot Points
You use plot points to place a point on a coordinate plane by using X and Y coordinates to draw on a coordinate grid. Read more...iWorksheets :3Study Guides :1Vocabulary :1
Coordinates
The use of coordinates pertains to graphing and the quadrants that are formed by the x and y-axis. Read more...iWorksheets :3Study Guides :1
Plotting Points
In a coordinate pair, the first number indicates the position of the point along the horizontal axis of the grid. The second number indicates the position of the point along the vertical axis. Read more...iWorksheets :4Study Guides :1Vocabulary :1
Area of Coordinate Polygons
Calculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1
MA.6.3.2.c. Identify the quadrant of a given point in the coordinate plane.
Plot Points
You use plot points to place a point on a coordinate plane by using X and Y coordinates to draw on a coordinate grid. Read more...iWorksheets :3Study Guides :1Vocabulary :1
Coordinates
The use of coordinates pertains to graphing and the quadrants that are formed by the x and y-axis. Read more...iWorksheets :3Study Guides :1
Plotting Points
In a coordinate pair, the first number indicates the position of the point along the horizontal axis of the grid. The second number indicates the position of the point along the vertical axis. Read more...iWorksheets :4Study Guides :1Vocabulary :1
Area of Coordinate Polygons
Calculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1
MA.6.3.2.d. Draw polygons in the coordinate plane given coordinates for the vertices.
Plot Points
You use plot points to place a point on a coordinate plane by using X and Y coordinates to draw on a coordinate grid. Read more...iWorksheets :3Study Guides :1Vocabulary :1
MA.6.3.2.e. Calculate vertical and horizontal distances in the coordinate plane to find perimeter and area.
Area of Coordinate Polygons
Calculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1

MA.6.3.3. Measurement: Students will perform and compare measurements and apply formulas.

MA.6.3.3.a. Determine the area of quadrilaterals, including parallelograms, trapezoids, and triangles by composition and decomposition of polygons as well as application of formulas.
Diameter of Circle
The diameter of a circle is a line segment that passes through the center of a circle connecting one side of the circle to the other. Read more...iWorksheets :3Study Guides :1
Area
An area is the amount of surface a shape covers.
An area is measured in inches, feet, meters or centimeters. Read more...
iWorksheets :3Study Guides :1
Area of Triangles and Quadrilaterals
The area is the surface or space within an enclosed region. Area is expressed in square units. Read more...iWorksheets :3Study Guides :1Vocabulary :2
Area
Area is the number of square units needed to cover a flat surface. Read more...iWorksheets :3Study Guides :1
Area of Coordinate Polygons
Calculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1
Area and Circumference of Circles
FreeThe circumference of a circle is the distance around the outside. The area of a circle is the space contained within the circumference. It is measured in square units. Read more...iWorksheets :4Study Guides :1
Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
MA.6.3.3.b. Determine the surface area of rectangular prisms and triangular prisms using nets.
Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
MA.6.3.3.c. Apply volume formulas for rectangular prisms.
Volume
Volume measures the amount a solid figure can hold. Read more...iWorksheets :3Study Guides :1
Finding Volume
Volume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1

NE.MA.6.4. DATA: Students will communicate data analysis/probability concepts using multiple representations to reason, solve problems, and make connections within mathematics and across disciplines.

MA.6.4.2. Analysis & Applications: Students will analyze data to address the situation.

MA.6.4.2.a. Solve problems using information presented in line plots, dot plots, box plots, and histograms.
Graphs
A graph is a diagram that shows information in an organized way. Read more...iWorksheets :6Study Guides :1
Analyzing, Graphing and Displaying Data
There are many types of graphs such as, bar graphs, histograms and line graphs. A bar graph compares data in categories and uses bars, either vertical or horizontal. A histogram is similar to a bar graph, but with histograms the bars touch each other where with bar graphs the bars do not touch each other. A line graph is useful for graphing how data changes over time. With a line graph, data is plotted as points and lines are drawn to connect the points to show how the data changes. Read more...iWorksheets :3Study Guides :1
MA.6.4.2.b. Compare and interpret data sets based upon their graphical representations (e.g., center, spread, and shape).
Tables
Tables refer to the different types of diagram used to display data.
There are many types of tables such as data table, frequency table, line chart and stern-and-leaf plot. Read more...
iWorksheets :3Study Guides :1
Graphs
A graph is a diagram that shows information in an organized way. Read more...iWorksheets :6Study Guides :1
Data Analysis
Collecting Data. Data = information. You can collect data from other people using polls and surveys. Recording Data. You can record the numerical data you collected on a chart or graph: bar graphs, pictographs, line graphs, pie charts, column charts. Read more...iWorksheets :4Study Guides :1
MA.6.4.2.c. Find and interpret the mean, median, mode, and range for a set of data.
Statistics
A statistic is a collection of numbers related to a specific topic. Read more...iWorksheets :6Study Guides :1
Statistics
The statistical mode is the number that occurs most frequently in a set of numbers. Read more...iWorksheets :3Study Guides :1
Data Analysis
Collecting Data. Data = information. You can collect data from other people using polls and surveys. Recording Data. You can record the numerical data you collected on a chart or graph: bar graphs, pictographs, line graphs, pie charts, column charts. Read more...iWorksheets :4Study Guides :1
Organizing Data
The data can be organized into groups, and evaluated. Mean, mode, median and range are different ways to evaluate data. The mean is the average of the data. The mode refers to the number that occurs the most often in the data. The median is the middle number when the data is arranged in order from lowest to highest. The range is the difference in numbers when the lowest number is subtracted from the highest number. Data can be organized into a table, such as a frequency table. Read more...iWorksheets :3Study Guides :1
MA.6.4.2.d. Compare the mean, median, mode, and range from two sets of data.
Statistics
A statistic is a collection of numbers related to a specific topic. Read more...iWorksheets :6Study Guides :1
Statistics
The statistical mode is the number that occurs most frequently in a set of numbers. Read more...iWorksheets :3Study Guides :1
Data Analysis
Collecting Data. Data = information. You can collect data from other people using polls and surveys. Recording Data. You can record the numerical data you collected on a chart or graph: bar graphs, pictographs, line graphs, pie charts, column charts. Read more...iWorksheets :4Study Guides :1
Organizing Data
The data can be organized into groups, and evaluated. Mean, mode, median and range are different ways to evaluate data. The mean is the average of the data. The mode refers to the number that occurs the most often in the data. The median is the middle number when the data is arranged in order from lowest to highest. The range is the difference in numbers when the lowest number is subtracted from the highest number. Data can be organized into a table, such as a frequency table. Read more...iWorksheets :3Study Guides :1

MA.6.4.3. Probability: Students will interpret and apply concepts of probability.

No additional indicator(s) at this level.
Probability
Probability word problems worksheets. Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. The closer a probability is to 1, the more certain that an event will occur. Read more...iWorksheets :3Study Guides :1
Probability
FreeProbability word problems worksheet. Probability is the measure of how likely an event is. Probability = (Total ways a specific outcome will happen) / (Total number of possible outcomes). The probability of event A is the number of ways event A can occur divided by the total number of possible outcomes. Read more...iWorksheets :4Study Guides :1
Data Analysis
Collecting Data. Data = information. You can collect data from other people using polls and surveys. Recording Data. You can record the numerical data you collected on a chart or graph: bar graphs, pictographs, line graphs, pie charts, column charts. Read more...iWorksheets :4Study Guides :1
Introduction to Probability
Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read more...iWorksheets :4Study Guides :1
Using Probability
Probability is the possibility that a certain event will occur. Probability is the chance of an event occurring divided by the total number of possible outcomes. Probability is based on whether events are dependent or independent of each other. An independent event refers to the outcome of one event not affecting the outcome of another event. A dependent event is when the outcome of one event does affect the outcome of the other event. Probability word problems. Read more...iWorksheets :3Study Guides :1
Standards

NewPath Learning resources are fully aligned to US Education Standards. Select a standard below to view correlations to your selected resource:

Alabama Courses of StudyAlaska Content and Performance StandardsArizona's College and Career Ready StandardsArkansas Curriculum FrameworksCalifornia Content StandardsColorado Academic Standards (CAS)Common Core State StandardsConnecticut Core StandardsDelaware Standards and InstructionFlorida StandardsGeorgia Standards of ExcellenceHawaii Content and Performance StandardsIdaho Content StandardsIllinois Learning StandardsIndiana Academic StandardsIowa CoreKansas Academic StandardsKentucky Academic StandardsLouisiana Academic StandardsMaine Learning ResultsMaryland College and Career-Ready StandardsMaryland StandardsMassachusetts Curriculum FrameworksMichigan Academic StandardsMinnesota Academic StandardsMississippi College & Career Readiness StandardsMissouri Learning StandardsMontana Content StandardsNational STEM StandardsNebraska Core Academic Content StandardsNevada Academic Content StandardsNew Hampshire College and Career Ready StandardsNew Jersey Common Core StandardsNew Jersey Student Learning StandardsNew Mexico Content StandardsNew York State Learning Standards and Core CurriculumNorth Carolina Standard Course of StudyNorth Dakota Academic Content StandardsOhio Learning StandardsOklahoma Academic StandardsOregon Academic Content StandardsPennsylvania Core and Academic StandardsRhode Island World-Class StandardsSouth Carolina Standards & LearningSouth Dakota Content StandardsTennessee Academic StandardsTexas Assessments of Academic Readiness (STAAR)Texas Essential Knowledge and Skills (TEKS)U.S. National StandardsUtah Core StandardsVermont Framework of Standards and LearningVirgin Islands Common Core StandardsVirginia Standards of LearningWashington DC Academic StandardsWashington State K–12 Learning Standards and GuidelinesWest Virginia College and Career Readiness StandardsWisconsin Academic StandardsWyoming Content and Performance Standards