## Maryland Standards for Sixth Grade Math

##### Commutative/Associative Properties
The commutative property allows us to change the order of the numbers without changing the outcome of the problem. The associative property allows us to change the grouping of the numbers. Read more...iWorksheets: 4Study Guides: 1
##### Division
Division is a mathematical operation is which a number, called a dividend is divided by another number, called a divisor to get a result, called a quotient. Read more...iWorksheets: 3Study Guides: 1
##### Evaluate Exponents
Evaluating an expression containing a number with an exponent means to write the repeated multiplication form and perform the operation Read more...iWorksheets: 3Study Guides: 1
##### Exponents
The exponent represents the number of times to multiply the number, or base. When a number is represented in this way it is called a power. Read more...iWorksheets: 3Study Guides: 1
##### Exponents to Repeated Multiplication
An exponent is a smaller-sized number which appears to the right and slightly above a number. Read more...iWorksheets: 3Study Guides: 1
##### Measurement
FreeThere are many units of measurement: inches, feet, yards, miles, millimeters, meters, seconds, minutes, hours, cups, pints, quarts, gallons, ounces, pounds, etc Read more...iWorksheets: 6Study Guides: 1
##### Multiplication
Multiplication is a mathematical operation in which numbers, called factors, are multiplied together to get a result, called a product. Multiplication can be used with numbers or decimals of any size. Read more...iWorksheets: 3Study Guides: 1
##### Perimeter
A perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. Read more...iWorksheets: 3Study Guides: 1
##### Repeated Multiplication to Exponents
The result of raising a number to a power is the same number that would be obtained by multiplying the base number together the number of times that is equal to the exponent. Read more...iWorksheets: 3Study Guides: 1
##### Simplify Fractions
Simplifying fractions is the process of reducing fractions and putting them into their lowest terms. Read more...iWorksheets: 3Study Guides: 1
##### Whole Numbers to Trillions
The number system we use is based on a place value system. Although there are only 10 different digits in this system, it is possible to order them in so many variations that the numbers represented are infinite. Read more...iWorksheets: 3Study Guides: 1

### MD.1.0. Knowledge of Algebra, Patterns, and Functions: Students will algebraically represent, model, analyze, or solve mathematical or real-world problems involving patterns or functional relationships.

#### 1.A.1. Patterns and Functions: Identify, describe, extend, and create numeric patterns and functions.

##### 1.A.1.b. Interpret and write a rule for a one-operation (+, -, x, /) function table (Assessment limit: Use whole numbers or decimals with no more than two decimal places (0 - 10,000)).
###### Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1

#### 1.B.1. Expressions, Equations, and Inequalities: Write and evaluate expressions.

##### 1.B.1.a. Write an algebraic expression to represent unknown quantities (Assessment limit: Use one unknown and one operation (+, -) with whole numbers, fractions with denominators as factors of 24, or decimals with no more than two decimal places (0 - 200)).
###### Simple Algebra
Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1
###### Introduction to Algebra
Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
##### 1.B.1.b. Evaluate an algebraic expression (Assessment limit: Use one unknown and one operation (+, -) with whole numbers (0 - 200), fractions with denominators as factors of 24 (0 - 50), or decimals with no more than two decimal places (0 - 50)).
###### Formulas
The formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1
###### Simple Algebra
Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1
###### Algebraic Equations
FreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1
##### 1.B.1.c. Evaluate numeric expressions using the order of operations (Assessment limit: Use no more than 4 operations (+, -, x, / with no remainders) with or without 1 set of parentheses or a division bar and whole numbers (0 - 100)).
###### Order of Operations
A numerical expression is a phrase which represents a number. Read more...iWorksheets :7Study Guides :1
###### Order of Operations
Rules of Order of Operations: 1st: Compute all operations inside of parentheses. 2nd: Compute all work with exponents. 3rd: Compute all multiplication and division from left to right. 4th: Compute all addition and subtraction from left to right. Read more...iWorksheets :3Study Guides :1
###### Using Integers
Integers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1

#### 1.B.2. Expressions, Equations, and Inequalities: Identify, write, solve, and apply equations and inequalities.

##### 1.B.2.a. Identify and write equations and inequalities to represent relationships (Assessment limit: Use a variable, the appropriate relational symbols (>, <, =), and one operational symbol (+, -, x, /) on either side and use fractions with denominators as factors of 24 (0-50) or decimals with no more than two decimal places (0 - 200)).
###### Equations and Inequalities
Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :5Study Guides :1
###### Algebraic Inequalities
FreeAlgebraic inequalities are mathematical equations that compare two quantities using these criteria: greater than, less than, less than or equal to, greater than or equal to. The only rule of inequalities that must be remembered is that when a variable is multiplied or divided by a negative number the sign is reversed. Read more...iWorksheets :3Study Guides :1
##### 1.B.2.b. Determine the unknown in a linear equation (Assessment limit: Use one operation (+, -, x, / with no remainders) and positive whole number coefficients using decimals with no more than two decimal places (0 - 100)).
###### Algebra
Algebra is the study of mathematical symbols and the rules for manipulating these symbols Read more...iWorksheets :4Study Guides :1Vocabulary :1
###### Algebraic Equations
FreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1
###### Introduction to Algebra
Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
###### Equations and Inequalities
Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :5Study Guides :1
##### 1.B.2.d. Identify or graph solutions of a one-step inequality on a number line.
###### Equations and Inequalities
Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :5Study Guides :1
###### Algebraic Inequalities
FreeAlgebraic inequalities are mathematical equations that compare two quantities using these criteria: greater than, less than, less than or equal to, greater than or equal to. The only rule of inequalities that must be remembered is that when a variable is multiplied or divided by a negative number the sign is reversed. Read more...iWorksheets :3Study Guides :1
##### 1.B.2.e. Apply given formulas to a problem solving situation.
###### Volume
Volume measures the amount a solid figure can hold. Read more...iWorksheets :3Study Guides :1
###### Area
An area is the amount of surface a shape covers.
An area is measured in inches, feet, meters or centimeters. Read more...
iWorksheets :3Study Guides :1
###### Perimeter
A polygon is any 2-dimensional shape formed with straight lines. The perimeter of a polygon is the sum of all its length. Read more...iWorksheets :6Study Guides :1
###### Formulas
The formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1
###### Area of Coordinate Polygons
Calculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1
###### Measurement, Perimeter, and Circumference
There are two systems used to measure objects, the U.S. Customary system and the metric system. The U.S. Customary system measures length in inches, feet, yards and miles. The metric system is a base ten system and measures length in kilometers, meters, and millimeters. Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To get the perimeter of any figure, simply add up the measures of the sides of the figure. Read more...iWorksheets :3Study Guides :1

#### 1.C.1. Numeric and Graphic Representations of Relationships: Locate points on a number line and in a coordinate plane.

##### 1.C.1.b. Graph ordered pairs in a coordinate plane (Assessment limit: Use no more than 3 ordered pairs of integers (-20 to 20) or no more than 3 ordered pairs of fractions/mixed numbers with denominators of 2 (-10 to 10)).
###### Plot Points
You use plot points to place a point on a coordinate plane by using X and Y coordinates to draw on a coordinate grid. Read more...iWorksheets :3Study Guides :1Vocabulary :1
###### Coordinates
The use of coordinates pertains to graphing and the quadrants that are formed by the x and y-axis. Read more...iWorksheets :3Study Guides :1
###### Plotting Points
In a coordinate pair, the first number indicates the position of the point along the horizontal axis of the grid. The second number indicates the position of the point along the vertical axis. Read more...iWorksheets :4Study Guides :1Vocabulary :1
###### Area of Coordinate Polygons
Calculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1
##### 1.C.1.c. Graph linear data from a function table.
###### Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1

#### 1.C.2. Numeric and Graphic Representations of Relationships: Analyze linear relationships.

##### 1.C.2.a. Identify and describe the change represented in a graph (Assessment limit: Identify increase, decrease, or no change).
###### Nonlinear Functions and Set Theory
A function can be in the form of y = mx + b. This is an equation of a line, so it is said to be a linear function. Nonlinear functions are functions that are not straight lines. Some examples of nonlinear functions are exponential functions and parabolic functions. An exponential function, y = aˆx, is a curved line that gets closer to but does not touch the x-axis. A parabolic function, y = ax² + bx +c, is a U-shaped line that can either be facing up or facing down. Read more...iWorksheets :4Study Guides :1

### MD.2.0. Knowledge Geometry: Students will apply the properties of one-, two-, or three-dimensional geometric figures to describe, reason, or solve problems about shape, size, position, or motion of objects.

#### 2.A.1. Plane Geometric Figures: Analyze the properties of plane geometric figures.

##### 2.A.1.a. Identify, describe, and label points, lines, rays, line segments, vertices, angles, and planes using correct symbolic notation.
###### Diameter of Circle
The diameter of a circle is a line segment that passes through the center of a circle connecting one side of the circle to the other. Read more...iWorksheets :3Study Guides :1
###### Polygon Characteristics
A polygon is a plane figure with at least three straight sides and angles, and typically five or more. Read more...iWorksheets :7Study Guides :1Vocabulary :1
###### Angles
A right angle is an angle that measures 90°. A straight angle is an angle that measures 180°. An obtuse angle is an angle that measures more than 90°. An acute angle is an angle that measures less than 90°. Read more...iWorksheets :10Study Guides :1
###### Plane Figures: Lines and Angles
Plane figures in regards to lines and angles refer to the coordinate plane and the various lines and angles within the coordinate plane. Lines in a coordinate plane can be parallel or perpendicular. Angles in a coordinate plane can be acute, obtuse, right or straight. Read more...iWorksheets :3Study Guides :1
###### Plane Figures: Closed Figure Relationships
Plane figures in regards to closed figure relationships refer to the coordinate plane and congruent figures, circles, circle graphs, transformations and symmetry. Congruent figures have the same size and shape. Transformations are made up of translations, rotations and reflections. A translation of a figure keeps the size and shape of a figure, but moves it to a different location. A rotation turns a figure about a point on the figure. A reflection of a figure produces a mirror image of the figure when it is reflected in a given line. Read more...iWorksheets :3Study Guides :1
###### Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
##### 2.A.1.c. Identify and describe the parts of a circle (Assessment limit: Use radius, diameter, or circumference).
###### Diameter of Circle
The diameter of a circle is a line segment that passes through the center of a circle connecting one side of the circle to the other. Read more...iWorksheets :3Study Guides :1
###### Area
An area is the amount of surface a shape covers.
An area is measured in inches, feet, meters or centimeters. Read more...
iWorksheets :3Study Guides :1
###### Area and Circumference of Circles
FreeThe circumference of a circle is the distance around the outside. The area of a circle is the space contained within the circumference. It is measured in square units. Read more...iWorksheets :4Study Guides :1
###### Measurement, Perimeter, and Circumference
There are two systems used to measure objects, the U.S. Customary system and the metric system. The U.S. Customary system measures length in inches, feet, yards and miles. The metric system is a base ten system and measures length in kilometers, meters, and millimeters. Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To get the perimeter of any figure, simply add up the measures of the sides of the figure. Read more...iWorksheets :3Study Guides :1
###### Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1

#### 2.A.2. Plane Geometric Figures: Analyze geometric relationships.

##### 2.A.2.b. Compare and classify triangles by angle measure (Assessment limit: Use equiangular, obtuse, acute, or right).
###### The Pythagorean Theorem
Pythagorean Theorem is a fundamental relation in Euclidean geometry. It states the sum of the squares of the legs of a right triangle equals the square of the length of the hypotenuse. Determine the distance between two points using the Pythagorean Theorem. Read more...iWorksheets :4Study Guides :1
##### 2.A.2.d. Identify and compare the relationship between parts of a circle (Assessment limit: Use radius, diameter or circumference (pi = 3.14)).
###### Diameter of Circle
The diameter of a circle is a line segment that passes through the center of a circle connecting one side of the circle to the other. Read more...iWorksheets :3Study Guides :1
###### Area
An area is the amount of surface a shape covers.
An area is measured in inches, feet, meters or centimeters. Read more...
iWorksheets :3Study Guides :1
###### Area and Circumference of Circles
FreeThe circumference of a circle is the distance around the outside. The area of a circle is the space contained within the circumference. It is measured in square units. Read more...iWorksheets :4Study Guides :1
###### Measurement, Perimeter, and Circumference
There are two systems used to measure objects, the U.S. Customary system and the metric system. The U.S. Customary system measures length in inches, feet, yards and miles. The metric system is a base ten system and measures length in kilometers, meters, and millimeters. Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To get the perimeter of any figure, simply add up the measures of the sides of the figure. Read more...iWorksheets :3Study Guides :1
###### Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1

#### 2.C.1. Representation of Geometric Figures: Represent plane geometric figures.

##### 2.C.1.b. Identify, describe, or draw a polygon (Assessment limit: Use the first quadrant given no more than six coordinates).
###### Plot Points
You use plot points to place a point on a coordinate plane by using X and Y coordinates to draw on a coordinate grid. Read more...iWorksheets :3Study Guides :1Vocabulary :1
###### Area of Coordinate Polygons
Calculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1

#### 2.D.1. Congruence and Similarity: Analyze congruent figures.

##### 2.D.1.a. Identify and describe congruent polygons and their corresponding parts.
###### Congruent Shapes
Figures are congruent if they are identical in every way except for their position. Read more...iWorksheets :3Study Guides :1
###### Plane Figures: Closed Figure Relationships
Plane figures in regards to closed figure relationships refer to the coordinate plane and congruent figures, circles, circle graphs, transformations and symmetry. Congruent figures have the same size and shape. Transformations are made up of translations, rotations and reflections. A translation of a figure keeps the size and shape of a figure, but moves it to a different location. A rotation turns a figure about a point on the figure. A reflection of a figure produces a mirror image of the figure when it is reflected in a given line. Read more...iWorksheets :3Study Guides :1

### MD.3.0. Knowledge of Measurement: Students will identify attributes, units, or systems of measurements or apply a variety of techniques, formulas, tools, or technology for determining measurements.

#### 3.B.1. Measurement Tools: Measure in customary and metric units.

##### 3.B.1.a. Select and use appropriate tools and units (Assessment limit; Measure length to the nearest 1/16 inch with a ruler).
###### Measurement
Measurement is the assignment of a number to a characteristic of an object or event, which can be compared with other objects or events. Read more...iWorksheets :6Study Guides :1Vocabulary :2

#### 3.B.2. Measurement Tools: Measure angles in polygons.

###### Angles
A right angle is an angle that measures 90°. A straight angle is an angle that measures 180°. An obtuse angle is an angle that measures more than 90°. An acute angle is an angle that measures less than 90°. Read more...iWorksheets :10Study Guides :1
###### Plane Figures: Lines and Angles
Plane figures in regards to lines and angles refer to the coordinate plane and the various lines and angles within the coordinate plane. Lines in a coordinate plane can be parallel or perpendicular. Angles in a coordinate plane can be acute, obtuse, right or straight. Read more...iWorksheets :3Study Guides :1

#### 3.C.1. Applications in Measurement: Estimate and apply measurement formulas.

##### 3.C.1.a. Estimate and determine the area of a polygon (Assessment limit: Use triangles and whole number dimensions (0 - 200)).
###### Area
An area is the amount of surface a shape covers.
An area is measured in inches, feet, meters or centimeters. Read more...
iWorksheets :3Study Guides :1
###### Area of Triangles and Quadrilaterals
The area is the surface or space within an enclosed region. Area is expressed in square units. Read more...iWorksheets :3Study Guides :1Vocabulary :2
###### Area
Area is the number of square units needed to cover a flat surface. Read more...iWorksheets :3Study Guides :1
###### Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
##### 3.C.1.b. Estimate and determine the volume of a rectangular prism (Assessment limit: Use rectangular prisms and whole number dimensions (0 - 1000)).
###### Volume
Volume measures the amount a solid figure can hold. Read more...iWorksheets :3Study Guides :1
###### Finding Volume
Volume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1

### MD.4.0. Knowledge of Statistics: Students will collect, organize, display, analyze, or interpret data to make decisions or predictions.

#### 4.A.1. Data Displays: Organize and display data.

##### 4.A.1.a. Organize and display data to make frequency tables (Assessment limit: Use no more than 5 categories or ranges of numbers and total frequencies of no more than 25).
###### Tables
Tables refer to the different types of diagram used to display data.
There are many types of tables such as data table, frequency table, line chart and stern-and-leaf plot. Read more...
iWorksheets :3Study Guides :1
###### Organizing Data
The data can be organized into groups, and evaluated. Mean, mode, median and range are different ways to evaluate data. The mean is the average of the data. The mode refers to the number that occurs the most often in the data. The median is the middle number when the data is arranged in order from lowest to highest. The range is the difference in numbers when the lowest number is subtracted from the highest number. Data can be organized into a table, such as a frequency table. Read more...iWorksheets :3Study Guides :1
###### Analyzing, Graphing and Displaying Data
There are many types of graphs such as, bar graphs, histograms and line graphs. A bar graph compares data in categories and uses bars, either vertical or horizontal. A histogram is similar to a bar graph, but with histograms the bars touch each other where with bar graphs the bars do not touch each other. A line graph is useful for graphing how data changes over time. With a line graph, data is plotted as points and lines are drawn to connect the points to show how the data changes. Read more...iWorksheets :3Study Guides :1

#### 4.B.1. Data Analysis: Analyze data.

##### 4.B.1.a. Interpret frequency tables (Assessment limit: Use no more than 5 categories or ranges of numbers and frequencies of no more than 25).
###### Tables
Tables refer to the different types of diagram used to display data.
There are many types of tables such as data table, frequency table, line chart and stern-and-leaf plot. Read more...
iWorksheets :3Study Guides :1
###### Organizing Data
The data can be organized into groups, and evaluated. Mean, mode, median and range are different ways to evaluate data. The mean is the average of the data. The mode refers to the number that occurs the most often in the data. The median is the middle number when the data is arranged in order from lowest to highest. The range is the difference in numbers when the lowest number is subtracted from the highest number. Data can be organized into a table, such as a frequency table. Read more...iWorksheets :3Study Guides :1
###### Analyzing, Graphing and Displaying Data
There are many types of graphs such as, bar graphs, histograms and line graphs. A bar graph compares data in categories and uses bars, either vertical or horizontal. A histogram is similar to a bar graph, but with histograms the bars touch each other where with bar graphs the bars do not touch each other. A line graph is useful for graphing how data changes over time. With a line graph, data is plotted as points and lines are drawn to connect the points to show how the data changes. Read more...iWorksheets :3Study Guides :1
##### 4.B.1.b. Read and analyze circle graphs (Assessment limit: Use no more than 5 categories using data in whole numbers or percents (0 - 1000)).
###### Graphs
A graph is a diagram that shows information in an organized way. Read more...iWorksheets :6Study Guides :1
###### Data Analysis
Collecting Data. Data = information. You can collect data from other people using polls and surveys. Recording Data. You can record the numerical data you collected on a chart or graph: bar graphs, pictographs, line graphs, pie charts, column charts. Read more...iWorksheets :4Study Guides :1
###### Plane Figures: Lines and Angles
Plane figures in regards to lines and angles refer to the coordinate plane and the various lines and angles within the coordinate plane. Lines in a coordinate plane can be parallel or perpendicular. Angles in a coordinate plane can be acute, obtuse, right or straight. Read more...iWorksheets :3Study Guides :1
###### Plane Figures: Closed Figure Relationships
Plane figures in regards to closed figure relationships refer to the coordinate plane and congruent figures, circles, circle graphs, transformations and symmetry. Congruent figures have the same size and shape. Transformations are made up of translations, rotations and reflections. A translation of a figure keeps the size and shape of a figure, but moves it to a different location. A rotation turns a figure about a point on the figure. A reflection of a figure produces a mirror image of the figure when it is reflected in a given line. Read more...iWorksheets :3Study Guides :1
##### 4.B.1.c. Interpret data from a stem-and-leaf plot.
###### Tables
Tables refer to the different types of diagram used to display data.
There are many types of tables such as data table, frequency table, line chart and stern-and-leaf plot. Read more...
iWorksheets :3Study Guides :1
###### Graphs and Tables
Using tables and graphs is a way people can interpret data. Data means information. So interpreting data just means working out what information is telling you. Information is sometimes shown in tables, charts and graphs to make the information easier to read. Read more...iWorksheets :3Study Guides :1
###### Analyzing, Graphing and Displaying Data
There are many types of graphs such as, bar graphs, histograms and line graphs. A bar graph compares data in categories and uses bars, either vertical or horizontal. A histogram is similar to a bar graph, but with histograms the bars touch each other where with bar graphs the bars do not touch each other. A line graph is useful for graphing how data changes over time. With a line graph, data is plotted as points and lines are drawn to connect the points to show how the data changes. Read more...iWorksheets :3Study Guides :1

#### 4.B.2. Data Analysis: Describe a set of data.

##### 4.B.2.a. Apply measures of central tendency (mean, median, mode.)
###### Statistics
A statistic is a collection of numbers related to a specific topic. Read more...iWorksheets :6Study Guides :1
###### Statistics
The statistical mode is the number that occurs most frequently in a set of numbers. Read more...iWorksheets :3Study Guides :1
###### Data Analysis
Collecting Data. Data = information. You can collect data from other people using polls and surveys. Recording Data. You can record the numerical data you collected on a chart or graph: bar graphs, pictographs, line graphs, pie charts, column charts. Read more...iWorksheets :4Study Guides :1
###### Organizing Data
The data can be organized into groups, and evaluated. Mean, mode, median and range are different ways to evaluate data. The mean is the average of the data. The mode refers to the number that occurs the most often in the data. The median is the middle number when the data is arranged in order from lowest to highest. The range is the difference in numbers when the lowest number is subtracted from the highest number. Data can be organized into a table, such as a frequency table. Read more...iWorksheets :3Study Guides :1

### MD.5.0. Knowledge of Probability: Students will use experimental methods or theoretical reasoning to determine probabilities to make predictions or solve problems about events whose outcomes involve random variation.

#### 5.B.1. Theoretical Probability: Determine the probability of one simple event comprised of equally likely outcomes.

##### 5.B.1.a. Express the probability of an event as a fraction..
###### Probability
Probability word problems worksheets. Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. The closer a probability is to 1, the more certain that an event will occur. Read more...iWorksheets :3Study Guides :1
###### Probability
FreeProbability word problems worksheet. Probability is the measure of how likely an event is. Probability = (Total ways a specific outcome will happen) / (Total number of possible outcomes). The probability of event A is the number of ways event A can occur divided by the total number of possible outcomes. Read more...iWorksheets :4Study Guides :1
###### Introduction to Probability
Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read more...iWorksheets :4Study Guides :1
###### Using Probability
Probability is the possibility that a certain event will occur. Probability is the chance of an event occurring divided by the total number of possible outcomes. Probability is based on whether events are dependent or independent of each other. An independent event refers to the outcome of one event not affecting the outcome of another event. A dependent event is when the outcome of one event does affect the outcome of the other event. Probability word problems. Read more...iWorksheets :3Study Guides :1
##### 5.B.1.b. Express the probability of an event as a decimal (Assessment limit: Use a sample space of 10, 20, 25, or 50 outcomes).
###### Probability
Probability word problems worksheets. Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. The closer a probability is to 1, the more certain that an event will occur. Read more...iWorksheets :3Study Guides :1
###### Probability
FreeProbability word problems worksheet. Probability is the measure of how likely an event is. Probability = (Total ways a specific outcome will happen) / (Total number of possible outcomes). The probability of event A is the number of ways event A can occur divided by the total number of possible outcomes. Read more...iWorksheets :4Study Guides :1
###### Introduction to Probability
Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read more...iWorksheets :4Study Guides :1
###### Using Probability
Probability is the possibility that a certain event will occur. Probability is the chance of an event occurring divided by the total number of possible outcomes. Probability is based on whether events are dependent or independent of each other. An independent event refers to the outcome of one event not affecting the outcome of another event. A dependent event is when the outcome of one event does affect the outcome of the other event. Probability word problems. Read more...iWorksheets :3Study Guides :1
##### 5.B.1.c. Express the probability of an event as a percent.
###### Probability
Probability word problems worksheets. Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. The closer a probability is to 1, the more certain that an event will occur. Read more...iWorksheets :3Study Guides :1
###### Probability
FreeProbability word problems worksheet. Probability is the measure of how likely an event is. Probability = (Total ways a specific outcome will happen) / (Total number of possible outcomes). The probability of event A is the number of ways event A can occur divided by the total number of possible outcomes. Read more...iWorksheets :4Study Guides :1
###### Introduction to Probability
Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read more...iWorksheets :4Study Guides :1
###### Using Probability
Probability is the possibility that a certain event will occur. Probability is the chance of an event occurring divided by the total number of possible outcomes. Probability is based on whether events are dependent or independent of each other. An independent event refers to the outcome of one event not affecting the outcome of another event. A dependent event is when the outcome of one event does affect the outcome of the other event. Probability word problems. Read more...iWorksheets :3Study Guides :1

#### 5.C.1. Experimental Probability: Analyze the results of a probability experiment.

##### 5.C.1.a. Make predictions and express the experimental probability as a fraction, a decimal, or a percent (Assessment limit: Use no more than 30 results in the sample space).
###### Introduction to Probability
Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read more...iWorksheets :4Study Guides :1

#### 5.C.2. Experimental Probability: Conduct a probability experiment.

###### Introduction to Probability
Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read more...iWorksheets :4Study Guides :1

#### 5.C.3. Experimental Probability: Compare outcomes of theoretical probability with the results of experimental probability.

###### Introduction to Probability
Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read more...iWorksheets :4Study Guides :1

#### 5.C.4. Experimental Probability: Describe the difference between theoretical and experimental probability.

###### Introduction to Probability
Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read more...iWorksheets :4Study Guides :1

### MD.6.0. Knowledge of Number Relationships and Computation/Arithmetic: Students will describe, represent, or apply numbers or their relationships or will estimate or compute using mental strategies, paper/pencil, or technology.

#### 6.A.1. Knowledge of Number and Place Value: Apply knowledge of rational numbers and place value.

##### 6.A.1.a. Read, write, and represent whole numbers (Assessment limit: Use exponential form with powers of 10 (0 - 100,000)).
###### Exponential & Scientific Notation
Exponential notation is shorten way of expressing a large number using exponents. Read more...iWorksheets :6Study Guides :1Vocabulary :1
##### 6.A.1.b. Read, write, and represent integers (Assessment limit: Use integers (-100 to 100)).
###### Positive & Negative Integers
Positive integers are all the whole numbers greater than zero. Negative integers are all the opposites of these whole numbers, numbers that are less than zero. Zero is considered neither positive nor negative Read more...iWorksheets :4Study Guides :1
###### Using Integers
Integers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1
##### 6.A.1.c. Identify and determine equivalent forms of fractions as decimals, as percents, and as ratios (Assessment limit: Use proper fractions with denominators as factors of 100, decimals, percents, or ratios (0 - 1000)).
###### Percents
A percentage is a number or ratio expressed as a fraction of 100. Read more...iWorksheets :6Study Guides :1Vocabulary :1
###### Percentage
The term percent refers to a fraction in which the denominator is 100. It is a way to compare a number with 100. Read more...iWorksheets :6Study Guides :1
###### Multiple Representation of Rational Numbers
What are multiple representations of rational numbers? A rational number represents a value or a part of a value. Rational numbers can be written as integers, fractions, decimals, and percents.The different representations for any given rational number are all equivalent. Read more...iWorksheets :3Study Guides :1
###### Rational and Irrational Numbers
A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. An irrational number is a number that cannot be made into a fraction. Decimals that do not repeat or end are irrational numbers. Pi is an irrational number. Read more...iWorksheets :3Study Guides :1
###### Introduction to Percent
What Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets :4Study Guides :1
##### 6.A.1.d. Compare and order fractions, decimals alone or mixed together, with and without relational symbols (<, >, =) (Assessment limit: Include no more than 4 fractions with denominators with factors of 100 or decimals with up to 2 decimal places (0 - 100)).
###### Fractions/Decimals
Any fraction can be changed into a decimal and any decimal can be changed into a fraction. Read more...iWorksheets :3Study Guides :1
###### Ordering Decimals
When putting decimals in order from least to greatest, we must look at the highest place value first. Read more...iWorksheets :6Study Guides :1Vocabulary :1
###### Compare and Order Fractions
When comparing two fractions that have a common denominator, you can looks at the numerators to decide which fraction is greater Read more...iWorksheets :3Study Guides :1Vocabulary :1
###### Ordering Fractions
The order of rational numbers depends on their relationship to each other and to zero. Rational numbers can be dispersed along a number line in both directions from zero. Read more...iWorksheets :6Study Guides :1
###### Ordering Fractions
A fraction consists of two numbers separated by a line - numerator and denominator. To order fractions with like numerators, look at the denominators and compare them two at a time. The fraction with the smaller denominator is the larger fraction. Read more...iWorksheets :3Study Guides :1
###### Fractions/Decimals
How to convert fractions to decimals: Divide the denominator (the bottom part) into the numerator (the top part). Read more...iWorksheets :3Study Guides :1
###### Less Than, Greater Than
Compare fractions and decimals using <, >, or =. Read more...iWorksheets :3Study Guides :1
###### Exponents, Factors and Fractions
In a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :4Study Guides :1
##### 6.A.1.e. Compare and order integers.
###### Positive & Negative Integers
Positive integers are all the whole numbers greater than zero. Negative integers are all the opposites of these whole numbers, numbers that are less than zero. Zero is considered neither positive nor negative Read more...iWorksheets :4Study Guides :1

#### 6.B.1. Number Theory: Apply number relationships.

##### 6.B.1.a. Determine prime factorizations for whole numbers and express them using exponential form.
###### Number Patterns
A number pattern is a group of numbers that are related to one another in some sort of pattern. Finding a pattern is a simpler way to solve a problem. Read more...iWorksheets :3Study Guides :1
###### Exponents, Factors and Fractions
In a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :4Study Guides :1

#### 6.C.1. Number Computation: Analyze number relations and compute.

##### 6.C.1.a. Add and subtract fractions and mixed numbers and express answers in simplest form (Assessment limit: Use proper fractions and denominators as factors of 60 (0 - 20)).
Freeis one of the four basic operations of arithmetic, with the others being subtraction, multiplication and division. The addition of two whole numbers is the total amount of those quantities combined. Read more...iWorksheets :3Study Guides :1
Adding or substracting fractions means to add or subtract the numerators and write the sum over the common denominator. Read more...iWorksheets :7Study Guides :1
###### Mixed Numbers
A mixed number has both a whole number and a fraction. Read more...iWorksheets :4Study Guides :1
Adding fractions is the operation of adding two or more different fractions. Read more...iWorksheets :3Study Guides :1
###### Subtracting Fractions
Fractions consist of two numbers. The top number is called the numerator. The bottom number is called the denominator. First, make sure the denominators are the same, then subtract the numerators. Read more...iWorksheets :3Study Guides :1
Fractions consist of two numbers. The top number is called the numerator. The bottom number is called the denominator. To add two fractions with the same denominator: Add the numerators and place the sum over the common denominator. Read more...iWorksheets :3Study Guides :1
###### Fraction Operations
Fraction operations are the processes of adding, subtracting, multiplying and dividing fractions and mixed numbers. A mixed number is a fraction with a whole number. Adding fractions is common in many everyday events, such as making a recipe and measuring wood. In order to add and subtract fractions, the fractions must have the same denominator. Read more...iWorksheets :3Study Guides :1
##### 6.C.1.b. Multiply fractions and mixed numbers and express in simplest form (Assessment limit: Use denominators as factors of 24 not including 24 (0 - 20)).
###### Mixed Numbers
A mixed number has both a whole number and a fraction. Read more...iWorksheets :4Study Guides :1
###### Multiply / Divide Fractions
To multiply two fractions with unlike denominators, multiply the numerators and multiply the denominators. It is unnecessary to change the denominators for this operation. Read more...iWorksheets :4Study Guides :1
###### Multiply Fractions
Multiplying fractions is the operation of multiplying two or more fractions together to find a product. Read more...iWorksheets :3Study Guides :1
###### Fraction Operations
Fraction operations are the processes of adding, subtracting, multiplying and dividing fractions and mixed numbers. A mixed number is a fraction with a whole number. Adding fractions is common in many everyday events, such as making a recipe and measuring wood. In order to add and subtract fractions, the fractions must have the same denominator. Read more...iWorksheets :3Study Guides :1
##### 6.C.1.c. Multiply decimals (Assessment limit: Use a decimal with no more than 3 digits multiplied by a 2-digit decimal (0 - 1000)).
You add/subtract/multiply/divide decimals the same way you add/subtract/multiply/divide whole numbers BUT you also need to place the decimal in the correct spot. When multiplying decimals, the decimals may or may NOT be lined up in the multiplication problem. Read more...iWorksheets :10Study Guides :1Vocabulary :1
##### 6.C.1.d. Divide decimals (Assessment limit: Use a decimal with no more than 5 digits divided by a whole number with no more than 2 digits without annexing zeros (0 - 1000)).
###### Decimal Operations
Decimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets :3Study Guides :1
##### 6.C.1.e. Determine a percent of a whole number (Assessment limit: Use 10 percent, 20 percent, 25 percent or 50 percent of a whole number (0 - 1000)).
###### Percent, Rate, Base
A percent is a way of comparing a number with 100. Percents are usually written with a percent sign. To solve a percent problem, multiply the value by the percent using one of the representations for the percent. Read more...iWorksheets :3Study Guides :1
###### Percentage
The term percent refers to a fraction in which the denominator is 100. It is a way to compare a number with 100. Read more...iWorksheets :6Study Guides :1
###### Introduction to Percent
What Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets :4Study Guides :1
###### Applying Percents
Applying percents is a term that refers to the different ways that percents can be used. The percent of change refers to the percent an amount either increases or decreases based on the previous amounts or numbers. Applying percents also means to calculate simple interest using the interest equation, I = P · r · t, where P is the principal; r is the rate and t is the time. Read more...iWorksheets :3Study Guides :1
##### 6.C.1.f. Simplify numeric expressions using the properties of addition and multiplication (Assessment limit: Use the distributive property to simplify numeric expressions with whole numbers (0 - 1000)).
###### Distributive Property
The distributive property offers a choice in multiplication of two ways to treat the addends in the equation. We are multiplying a sum by a factor which results in the same product as multiplying each addend by the factor and then adding the products. Read more...iWorksheets :3Study Guides :1
###### Using Integers
Integers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1

#### 6.C.2. Number Computation: Estimation.

##### 6.C.2.a. Determine the approximate products and quotients of decimals (Assessment limit: Use a decimal with no more than a 3 digits multiplied by a 2-digit whole number, or the quotient of a decimal with no more than 4 digits in the dividend divided by a 2-digit whole number (0 - 1000)).
###### Estimation
Estimation is the process of rounding a number either up or down to the nearest place value requested. Estimation makes it easier to perform mathematical operations quickly. Read more...iWorksheets :6Study Guides :1

#### 6.C.3. Number Computation: Analyze ratios, proportions, and percents.

##### 6.C.3.a. Represent ratios in a variety of forms.
###### Proportions/Equivalent Fractions
Equivalent fractions represent the same ratio between two values. Read more...iWorksheets :3Study Guides :1
###### Ratio
Ratios are used to make a comparison between two things. Read more...iWorksheets :7Study Guides :1Vocabulary :1
###### Ratio
A ratio is a comparison of two numbers. The two numbers must have the same unit in order to be compared. Read more...iWorksheets :3Study Guides :1
###### Simple Proportions
A proportion is a statement that two ratios are equal. A ratio is a pair of numbers used to show a comparison. To solve a proportion, calculate equivalent fractions in order to be sure the two fractions (ratios) are equal. Read more...iWorksheets :3Study Guides :1
###### Numerical Proportions
Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1
##### 6.C.3.b. Use ratios and unit rates to solve problems.
###### Numerical Proportions
Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1

### MD.7.0. Processes of Mathematics: Students demonstrate the processes of mathematics by making connections and applying reasoning to solve problems and to communicate their findings.

#### 7.A.1. Problem Solving: Apply a variety of concepts, processes, and skills to solve problems

##### 7.A.1.c. Make a plan to solve a problem
###### Applying Percents
Applying percents is a term that refers to the different ways that percents can be used. The percent of change refers to the percent an amount either increases or decreases based on the previous amounts or numbers. Applying percents also means to calculate simple interest using the interest equation, I = P · r · t, where P is the principal; r is the rate and t is the time. Read more...iWorksheets :3Study Guides :1
##### 7.A.1.d. Apply a strategy, i.e., draw a picture, guess and check, finding a pattern, writing an equation
###### Applying Percents
Applying percents is a term that refers to the different ways that percents can be used. The percent of change refers to the percent an amount either increases or decreases based on the previous amounts or numbers. Applying percents also means to calculate simple interest using the interest equation, I = P · r · t, where P is the principal; r is the rate and t is the time. Read more...iWorksheets :3Study Guides :1
##### 7.A.1.e. Select a strategy, i.e., draw a picture, guess and check, finding a pattern, writing an equation
###### Applying Percents
Applying percents is a term that refers to the different ways that percents can be used. The percent of change refers to the percent an amount either increases or decreases based on the previous amounts or numbers. Applying percents also means to calculate simple interest using the interest equation, I = P · r · t, where P is the principal; r is the rate and t is the time. Read more...iWorksheets :3Study Guides :1
###### Algebraic Equations
What are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. When algebraic equations are written in words, the words must be changed into the appropriate numbers and variable in order to solve. Read more...iWorksheets :4Study Guides :1
##### 7.A.1.f. Identify alternative ways to solve a problem
###### Applying Percents
Applying percents is a term that refers to the different ways that percents can be used. The percent of change refers to the percent an amount either increases or decreases based on the previous amounts or numbers. Applying percents also means to calculate simple interest using the interest equation, I = P · r · t, where P is the principal; r is the rate and t is the time. Read more...iWorksheets :3Study Guides :1

#### 7.C.1. Communications: Present mathematical ideas using words, symbols, visual displays, or technology

##### 7.C.1.a. Use multiple representations to express concepts or solutions
###### Formulas
The formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1
###### One & Two Step Equations
An algebraic equation is an expression in which a letter represents an unknown number Read more...iWorksheets :3Study Guides :1
##### 7.C.1.e. Express solutions using pictorial, tabular, graphical, or algebraic methods
###### Formulas
The formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1
###### One & Two Step Equations
An algebraic equation is an expression in which a letter represents an unknown number Read more...iWorksheets :3Study Guides :1