## Virginia Standards of Learning for Seventh Grade Math

Using ProbabilityProbability is the possibility that a certain event will occur. Probability is the chance of an event occurring divided by the total number of possible outcomes. Probability is based on whether events are dependent or independent of each other. An independent event refers to the outcome of one event not affecting the outcome of another event. A dependent event is when the outcome of one event does affect the outcome of the other event. Probability word problems. Read more...iWorksheets: 3Study Guides: 1
Nonlinear Functions and Set TheoryA function can be in the form of y = mx + b. This is an equation of a line, so it is said to be a linear function. Nonlinear functions are functions that are not straight lines. Some examples of nonlinear functions are exponential functions and parabolic functions. An exponential function, y = aˆx, is a curved line that gets closer to but does not touch the x-axis. A parabolic function, y = ax² + bx +c, is a U-shaped line that can either be facing up or facing down. Read more...iWorksheets: 5Study Guides: 1
Using IntegersIntegers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets: 4Study Guides: 1
Exploring Area and Surface AreaArea is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets: 4Study Guides: 1
Measurement, Perimeter, and CircumferenceThere are two systems used to measure objects, the U.S. Customary system and the metric system. The U.S. Customary system measures length in inches, feet, yards and miles. The metric system is a base ten system and measures length in kilometers, meters, and millimeters. Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To get the perimeter of any figure, simply add up the measures of the sides of the figure. Read more...iWorksheets: 3Study Guides: 1
Plane Figures: Closed Figure RelationshipsPlane figures in regards to closed figure relationships refer to the coordinate plane and congruent figures, circles, circle graphs, transformations and symmetry. Congruent figures have the same size and shape. Transformations are made up of translations, rotations and reflections. A translation of a figure keeps the size and shape of a figure, but moves it to a different location. A rotation turns a figure about a point on the figure. A reflection of a figure produces a mirror image of the figure when it is reflected in a given line. Read more...iWorksheets: 3Study Guides: 1
Applying PercentsApplying percents is a term that refers to the different ways that percents can be used. The percent of change refers to the percent an amount either increases or decreases based on the previous amounts or numbers. Applying percents also means to calculate simple interest using the interest equation, I = P · r · t, where P is the principal; r is the rate and t is the time. Read more...iWorksheets: 3Study Guides: 1
Introduction to PercentWhat Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets: 4Study Guides: 1
Decimal OperationsDecimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets: 3Study Guides: 1
Fraction OperationsFraction operations are the processes of adding, subtracting, multiplying and dividing fractions and mixed numbers. A mixed number is a fraction with a whole number. Adding fractions is common in many everyday events, such as making a recipe and measuring wood. In order to add and subtract fractions, the fractions must have the same denominator. Read more...iWorksheets: 3Study Guides: 1
Numerical ProportionsNumerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets: 4Study Guides: 1

### VA.NNS.7. Number and Number Sense

#### 7.1. The student will

##### 7.1.c. Compare and order rational numbers.
Fractions/DecimalsAny fraction can be changed into a decimal and any decimal can be changed into a fraction. Read more...iWorksheets :3Study Guides :1
Ordering FractionsThe order of rational numbers depends on their relationship to each other and to zero. Rational numbers can be dispersed along a number line in both directions from zero. Read more...iWorksheets :6Study Guides :1
Rational and Irrational NumbersA rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. An irrational number is a number that cannot be made into a fraction. Decimals that do not repeat or end are irrational numbers. Pi is an irrational number. Read more...iWorksheets :3Study Guides :1
Exponents, Factors and FractionsFreeIn a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :8Study Guides :1
##### 7.1.d. Determine square roots of perfect squares.
Rational and Irrational NumbersA rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. An irrational number is a number that cannot be made into a fraction. Decimals that do not repeat or end are irrational numbers. Pi is an irrational number. Read more...iWorksheets :3Study Guides :1
The Pythagorean TheoremPythagorean Theorem is a fundamental relation in Euclidean geometry. It states the sum of the squares of the legs of a right triangle equals the square of the length of the hypotenuse. Determine the distance between two points using the Pythagorean Theorem. Read more...iWorksheets :10Study Guides :2
Real numbersReal numbers are the set of rational and irrational numbers. The set of rational numbers includes integers, whole numbers, and natural numbers. A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. An irrational number is a number that cannot be made into a fraction. Decimals that do not repeat or end are irrational numbers. Read more...iWorksheets :4Study Guides :1

### VA.MG.7. Measurement and Geometry

#### 7.4. The student will

##### 7.4.a. Describe and determine the volume and surface area of rectangular prisms and cylinders.
VolumeVolume measures the amount a solid figure can hold. Read more...iWorksheets :3Study Guides :1
Finding VolumeVolume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1
Three dimensional geometry/MeasurementThree-dimensional geometry/measurement refers to three-dimensional (3D) shapes and the measurement of their shapes concerning volume and surface area. The figures of prisms, cylinders, pyramids, cones and spheres are all 3D figures. Volume measures the amount a solid figure can hold. Volume is measured in terms of units³ and can be measured in inches, feet, meters, centimeters, and millimeters. Read more...iWorksheets :11Study Guides :1
##### 7.4.b. Solve problems, including practical problems, involving the volume and surface area of rectangular prisms and cylinders.
VolumeVolume measures the amount a solid figure can hold. Read more...iWorksheets :3Study Guides :1
Finding VolumeVolume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1
Three dimensional geometry/MeasurementThree-dimensional geometry/measurement refers to three-dimensional (3D) shapes and the measurement of their shapes concerning volume and surface area. The figures of prisms, cylinders, pyramids, cones and spheres are all 3D figures. Volume measures the amount a solid figure can hold. Volume is measured in terms of units³ and can be measured in inches, feet, meters, centimeters, and millimeters. Read more...iWorksheets :11Study Guides :1

#### 7.5. The student will solve problems, including practical problems, involving the relationship between corresponding sides and corresponding angles of similar quadrilaterals and triangles.

Geometric ProportionsGeometric proportions compare two similar polygons. Similar polygons have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :4Study Guides :1
Ratios, proportions and percentsNumerical proportions compare two numbers. A proportion is usually in the form of a:b or a/b. There are 4 parts to a proportion and it can be solved when 3 of the 4 parts are known. Proportions can be solved using the Cross Product Property, which states that the cross products of a proportion are equal. Read more...iWorksheets :4Study Guides :1
Similarity and scaleSimilarity refers to similar figures and the ability to compare them using proportions. Similar figures have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :7Study Guides :1

#### 7.6. The student will

##### 7.6.a. Compare and contrast quadrilaterals based on their properties.
Plane Figures: Lines and AnglesPlane figures in regards to lines and angles refer to the coordinate plane and the various lines and angles within the coordinate plane. Lines in a coordinate plane can be parallel or perpendicular. Angles in a coordinate plane can be acute, obtuse, right or straight. Adjacent angles are two angles that have a common vertex and a common side but do not overlap. Read more...iWorksheets :3Study Guides :1

#### 7.7. The student will apply translations and reflections of right triangles or rectangles in the coordinate plane.

Patterns in geometryPatterns in geometry refer to shapes and their measures. Shapes can be congruent to one another. Shapes can also be manipulated to form similar shapes. The types of transformations are reflection, rotation, dilation and translation. With a reflection, a figure is reflected, or flipped, in a line so that the new figure is a mirror image on the other side of the line. A rotation rotates, or turns, a shape to make a new figure. A dilation shrinks or enlarges a figure. A translation shifts a figure to a new position. Read more...iWorksheets :3Study Guides :1

### VA.PS.7. Probability and Statistics

#### 7.8. The student will

##### 7.8.a. Determine the theoretical and experimental probabilities of an event.
Introduction to ProbabilityProbability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read more...iWorksheets :4Study Guides :1
Experimental ProbabilityFreeExperimental probability is the probability that a certain outcome will occur based on an experiment being performed multiple times. Probability word problems worksheets. Read more...iWorksheets :3Study Guides :1
Theoretical probability and countingProbability word problems worksheets. Theoretical probability is the probability that a certain outcome will occur based on all the possible outcomes. Sometimes, the number of ways that an event can happen depends on the order. A permutation is an arrangement of objects in which order matters. A combination is a set of objects in which order does not matter. Probability is also based on whether events are dependent or independent of each other. Read more...iWorksheets :3Study Guides :1
##### 7.8.b. Investigate and describe the difference between the experimental probability and theoretical probability of an event.
Introduction to ProbabilityProbability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read more...iWorksheets :4Study Guides :1
Experimental ProbabilityFreeExperimental probability is the probability that a certain outcome will occur based on an experiment being performed multiple times. Probability word problems worksheets. Read more...iWorksheets :3Study Guides :1
Theoretical probability and countingProbability word problems worksheets. Theoretical probability is the probability that a certain outcome will occur based on all the possible outcomes. Sometimes, the number of ways that an event can happen depends on the order. A permutation is an arrangement of objects in which order matters. A combination is a set of objects in which order does not matter. Probability is also based on whether events are dependent or independent of each other. Read more...iWorksheets :3Study Guides :1

#### 7.9. The student, given data in a practical situation, will

##### 7.9.b. Make observations and inferences about data represented in a histogram.
TablesTables refer to the different types of diagram used to display data. <br>There are many types of tables such as data table, frequency table, line chart and stern-and-leaf plot. Read more...iWorksheets :3Study Guides :1
GraphsFreeA graph is a diagram that shows information in an organized way. Read more...iWorksheets :15Study Guides :1
StatisticsA statistic is a collection of numbers related to a specific topic. Read more...iWorksheets :6Study Guides :1
Organizing DataThe data can be organized into groups, and evaluated. Mean, mode, median and range are different ways to evaluate data. The mean is the average of the data. The mode refers to the number that occurs the most often in the data. The median is the middle number when the data is arranged in order from lowest to highest. The range is the difference in numbers when the lowest number is subtracted from the highest number. Data can be organized into a table, such as a frequency table. Read more...iWorksheets :3Study Guides :1
Analyzing, Graphing and Displaying DataThere are many types of graphs such as, bar graphs, histograms and line graphs. A bar graph compares data in categories and uses bars, either vertical or horizontal. A histogram is similar to a bar graph, but with histograms the bars touch each other where with bar graphs the bars do not touch each other. A line graph is useful for graphing how data changes over time. With a line graph, data is plotted as points and lines are drawn to connect the points to show how the data changes. Read more...iWorksheets :6Study Guides :1
Using graphs to analyze dataThere are different types of graphs and ways that data can be analyzed using the graphs. Graphs are based on the coordinate plane. Data are the points on the plane. If collecting data about the ages of people living on one street, the data is all the ages. The data can then be organized into groups, and evaluated. Mean, mode and median are different ways to evaluate data. Read more...iWorksheets :7Study Guides :1

### VA.PFA.7. Patterns, Functions, and Algebra

#### 7.10. The student will

##### 7.10.a. Determine the slope, m, as rate of change in a proportional relationship between two quantities and write an equation in the form y = mx to represent the relationship.
Introduction to FunctionsA function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :7Study Guides :1
Linear equationsLinear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :6Study Guides :1
##### 7.10.c. Determine the y-intercept, b, in an additive relationship between two quantities and write an equation in the form y = x + b to represent the relationship.
Linear equationsLinear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :6Study Guides :1
##### 7.10.d. Graph a line representing an additive relationship between two quantities given the y-intercept and an ordered pair, or given the equation in the form y = x + b, where b represents the y-intercept.
Introduction to FunctionsA function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :7Study Guides :1
Linear equationsLinear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :6Study Guides :1

#### 7.11. The student will evaluate algebraic expressions for given replacement values of the variables.

FormulasThe formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1
Simple AlgebraSimple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1
Algebraic EquationsFreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1

#### 7.12. The student will solve two-step linear equations in one variable, including practical problems that require the solution of a two-step linear equation in one variable.

One & Two Step EquationsAn algebraic equation is an expression in which a letter represents an unknown number Read more...iWorksheets :5Study Guides :1
Algebraic EquationsFreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1
Introduction to AlgebraAlgebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :4Study Guides :1
Equations and InequalitiesAlgebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :6Study Guides :1
Algebraic EquationsWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. When algebraic equations are written in words, the words must be changed into the appropriate numbers and variable in order to solve. Read more...iWorksheets :5Study Guides :1
Equations and inequalitiesAn equation is mathematical statement that shows that two expressions are equal to each other. The expressions used in an equation can contain variables or numbers. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Inequalities are also solved by using inverse operations. Read more...iWorksheets :3Study Guides :1
Integer operationsInteger operations are the mathematical operations that involve integers. Integers are negative numbers, zero and positive numbers. Adding and subtracting integers are useful in everyday life because there are many situations that involved negative numbers such as calculating sea level or temperatures. Equations with integers are solved using inverse operations. Addition and subtraction are inverse operations, and multiplication and division are inverse operations of each other. Read more...iWorksheets :4Study Guides :1
Solving linear equationsWhen graphed, a linear equation is a straight line. Although the standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept, linear equations often have both of the variables on the same side of the equal sign. Linear equations can be solved for one variable when the other variable is given. Read more...iWorksheets :5Study Guides :1
Solving equations and inequalitiesAlgebraic equations are mathematical equations that contain a letter or variable which represents a number. To solve an algebraic equation, inverse operations are used. Algebraic inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to, ≥; less than, <; and less than or equal to, ≤. When multiplying or dividing by a negative number occurs, the inequality sign is reversed from the original inequality sign in order for the inequality to be correct. Read more...iWorksheets :3Study Guides :1

#### 7.13. The student will solve one- and two-step linear inequalities in one variable, including practical problems, involving addition, subtraction, multiplication, and division, and graph the solution on a number line.

Equations and InequalitiesAlgebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :6Study Guides :1
Algebraic InequalitiesFreeAlgebraic inequalities are mathematical equations that compare two quantities using these criteria: greater than, less than, less than or equal to, greater than or equal to. The only rule of inequalities that must be remembered is that when a variable is multiplied or divided by a negative number the sign is reversed. Read more...iWorksheets :3Study Guides :1
Equations and inequalitiesAn equation is mathematical statement that shows that two expressions are equal to each other. The expressions used in an equation can contain variables or numbers. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Inequalities are also solved by using inverse operations. Read more...iWorksheets :3Study Guides :1
Integer operationsInteger operations are the mathematical operations that involve integers. Integers are negative numbers, zero and positive numbers. Adding and subtracting integers are useful in everyday life because there are many situations that involved negative numbers such as calculating sea level or temperatures. Equations with integers are solved using inverse operations. Addition and subtraction are inverse operations, and multiplication and division are inverse operations of each other. Read more...iWorksheets :4Study Guides :1
Rational numbers and operationsA rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. A square root of a number is a number that when multiplied by itself will result in the original number. The square root of 4 is 2 because 2 · 2 = 4. Read more...iWorksheets :3Study Guides :1