### N.1. Number and Operations (NCTM)

#### 1.1. Understand numbers, ways of representing numbers, relationships among numbers, and number systems.

##### 1.1.1. Work flexibly with fractions, decimals, and percents to solve problems.

**Percent, Rate, Base**A percent is a way of comparing a number with 100. Percents are usually written with a percent sign. To solve a percent problem, multiply the value by the percent using
one of the representations for the percent. Read more...iWorksheets :3Study Guides :1**Add/Subtract Fractions**Adding or substracting fractions means to add or subtract the numerators and write the sum over the common denominator. Read more...iWorksheets :9Study Guides :1**Multiply / Divide Fractions**FreeTo multiply two fractions with unlike denominators, multiply the numerators and multiply the denominators. It is unnecessary to change the denominators for this operation. Read more...iWorksheets :6Study Guides :1**Multiply Fractions**Multiplying fractions is the operation of multiplying two or more fractions together to find a product. Read more...iWorksheets :3Study Guides :1**Percentage**The term percent refers to a fraction in which the denominator is 100.
It is a way to compare a number with 100. Read more...iWorksheets :6Study Guides :1**Multiple Representation of Rational Numbers**What are multiple representations of rational numbers? A rational number represents a value or a part of a value. Rational numbers can be written as integers, fractions, decimals, and percents.The different representations for any given rational number are all equivalent. Read more...iWorksheets :3Study Guides :1**Decimal Operations**Decimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets :3Study Guides :1**Introduction to Percent**What Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets :4Study Guides :1**Applying Percents**Applying percents is a term that refers to the different ways that percents can be used. The percent of change refers to the percent an amount either increases or decreases based on the previous amounts or numbers. Applying percents also means to calculate simple interest using the interest equation, I = P · r · t, where P is the principal; r is the rate and t is the time. Read more...iWorksheets :3Study Guides :1**Rational numbers and operations**A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. A square root of a number is a number that when multiplied by itself will result in the original number. The square root of 4 is 2 because 2 · 2 = 4. Read more...iWorksheets :3Study Guides :1**Numbers and percents**Numbers and percents refer to the relationship between fractions, decimals, and percents. A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Fractions and decimals can easily be changed into percent. There are three cases of percent. Read more...iWorksheets :3Study Guides :1**Applications of percent**Percent increase or decrease can be found by using the formula: percent of change = actual change/original amount. The change is either an increase, if the amounts went up or a decrease if the amounts went down. If a number changes from 33 to 89, the percent of increase would be: Percent of increase = (89 -33) ÷ 33 = 56 ÷ 33 ≈ 1.6969 ≈ 170% Read more...iWorksheets :4Study Guides :1##### 1.1.2. Compare and order fractions, decimals, and percents efficiently and find their approximate locations on a number line.

**Fractions/Decimals**Any fraction can be changed into a decimal and any decimal can be changed into a fraction. Read more...iWorksheets :3Study Guides :1**Ordering Fractions**The order of rational numbers depends on their relationship to each other and to zero. Rational numbers can be dispersed along a number line in both directions from zero. Read more...iWorksheets :6Study Guides :1**Exponents, Factors and Fractions**FreeIn a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :8Study Guides :1##### 1.1.3. Develop meaning for percents greater than 100 and less than 1.

**Percent, Rate, Base**A percent is a way of comparing a number with 100. Percents are usually written with a percent sign. To solve a percent problem, multiply the value by the percent using
one of the representations for the percent. Read more...iWorksheets :3Study Guides :1**Introduction to Percent**What Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets :4Study Guides :1##### 1.1.4. Understand and use ratios and proportions to represent quantitative relationships.

**Ratio**A ratio is a comparison of two numbers. The two numbers must have
the same unit in order to be compared. Read more...iWorksheets :3Study Guides :1**Simple Proportions**A proportion is a statement that two ratios are equal. A ratio is a pair of numbers used to show a comparison. To solve a proportion, calculate equivalent fractions in order to be sure the two fractions (ratios) are equal. Read more...iWorksheets :3Study Guides :1**Numerical Proportions**Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1**Ratios, proportions and percents**Numerical proportions compare two numbers. A proportion is usually in the form of a:b or a/b. There are 4 parts to a proportion and it can be solved when 3 of the 4 parts are known. Proportions can be solved using the Cross Product Property, which states that the cross products of a proportion are equal. Read more...iWorksheets :4Study Guides :1**Similarity and scale**Similarity refers to similar figures and the ability to compare them using proportions. Similar figures have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :7Study Guides :1**Numbers and percents**Numbers and percents refer to the relationship between fractions, decimals, and percents. A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Fractions and decimals can easily be changed into percent. There are three cases of percent. Read more...iWorksheets :3Study Guides :1##### 1.1.5. Develop an understanding of large numbers and recognize and appropriately use exponential, scientific, and calculator notation.

**Evaluate Exponents**Evaluating an expression containing a number with an exponent
means to write the repeated multiplication form and perform the
operation Read more...iWorksheets :3Study Guides :1**Repeated Multiplication to Exponents**The result of raising a number to a power is the same number that would be obtained by multiplying the base number together the number of times that is equal to the exponent. Read more...iWorksheets :3Study Guides :1**Exponents**The exponent represents the number of times to
multiply the number, or base. When a number is represented in this way it is called a power. Read more...iWorksheets :4Study Guides :1**Exponents, Factors and Fractions**FreeIn a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :8Study Guides :1**Polynomials and Exponents**FreeA polynomial is an expression which is in the form of ax<sup>n</sup>, where a is any real number and n is a whole number. If a polynomial has only one term, it is called a monomial. If it has two terms, it is a binomial and if it has three terms, it is a trinomial. The standard form of a polynomial is when the powers of the variables are decreasing from left to right. Read more...iWorksheets :6Study Guides :1##### 1.1.6. Use factors, multiples, prime factorization, and relatively prime numbers to solve problems.

**Number Patterns**A number pattern is a group of numbers that are related to one another in some sort of pattern. Finding a pattern is a simpler way to solve a problem. Read more...iWorksheets :3Study Guides :1**Exponents, Factors and Fractions**FreeIn a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :8Study Guides :1##### 1.1.7. Develop meaning for integers and represent and compare quantities with them.

**Using Integers**Integers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive
integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1**Decimal Operations**Decimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets :3Study Guides :1**Integer operations**Integer operations are the mathematical operations that involve integers. Integers are negative numbers, zero and positive numbers. Adding and subtracting integers are useful in everyday life because there are many situations that involved negative numbers such as calculating sea level or temperatures. Equations with integers are solved using inverse operations. Addition and subtraction are inverse operations, and multiplication and division are inverse operations of each other. Read more...iWorksheets :4Study Guides :1#### 1.2. Understand meanings of operations and how they relate to one another.

##### 1.2.1. Understand the meaning and effects of arithmetic operations with fractions, decimals, and integers.

**Add/Subtract Fractions**Adding or substracting fractions means to add or subtract the numerators and write the sum over the common denominator. Read more...iWorksheets :9Study Guides :1**Multiply / Divide Fractions**FreeTo multiply two fractions with unlike denominators, multiply the numerators and multiply the denominators. It is unnecessary to change the denominators for this operation. Read more...iWorksheets :6Study Guides :1**Multiply Fractions**Multiplying fractions is the operation of multiplying two or more fractions together to find a product. Read more...iWorksheets :3Study Guides :1**Decimal Operations**Decimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets :3Study Guides :1**Integer operations**Integer operations are the mathematical operations that involve integers. Integers are negative numbers, zero and positive numbers. Adding and subtracting integers are useful in everyday life because there are many situations that involved negative numbers such as calculating sea level or temperatures. Equations with integers are solved using inverse operations. Addition and subtraction are inverse operations, and multiplication and division are inverse operations of each other. Read more...iWorksheets :4Study Guides :1**Rational numbers and operations**A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. A square root of a number is a number that when multiplied by itself will result in the original number. The square root of 4 is 2 because 2 · 2 = 4. Read more...iWorksheets :3Study Guides :1##### 1.2.2. Use the associative and commutative properties of addition and multiplication and the distributive property of multiplication over addition to simplify computations with integers, fractions, and decimals.

**Distributive Property**The distributive property offers a choice in multiplication of two ways to treat the addends in the equation. We are multiplying a sum by a factor which results in the same product as multiplying each addend by the factor and then adding the products. Read more...iWorksheets :3Study Guides :1**Commutative/Associative Properties**The
commutative property allows us to change the order of the
numbers
without changing the outcome of the problem. The
associative property
allows us to change the grouping of the
numbers. Read more...iWorksheets :4Study Guides :1**Using Integers**Integers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive
integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1##### 1.2.3. Understand and use the inverse relationships of addition and subtraction, multiplication and division, and squaring and finding square roots to simplify computations and solve problems.

#### 1.3. Compute fluently and make reasonable estimates.

##### 1.3.1. Select appropriate methods and tools for computing with fractions and decimals from among mental computation, estimation, calculators or computers, and paper and pencil, depending on the situation, and apply the selected methods.

**Add/Subtract Fractions**Adding or substracting fractions means to add or subtract the numerators and write the sum over the common denominator. Read more...iWorksheets :9Study Guides :1**Multiply / Divide Fractions**FreeTo multiply two fractions with unlike denominators, multiply the numerators and multiply the denominators. It is unnecessary to change the denominators for this operation. Read more...iWorksheets :6Study Guides :1**Estimation**Estimation is the process of rounding a number either up or down to the nearest place value requested. Estimation makes it easier to perform mathematical operations quickly. Read more...iWorksheets :6Study Guides :1**Multiply Fractions**Multiplying fractions is the operation of multiplying two or more fractions together to find a product. Read more...iWorksheets :3Study Guides :1**Decimal Operations**Decimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets :3Study Guides :1**Rational numbers and operations**A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. A square root of a number is a number that when multiplied by itself will result in the original number. The square root of 4 is 2 because 2 · 2 = 4. Read more...iWorksheets :3Study Guides :1##### 1.3.2. Develop and analyze algorithms for computing with fractions, decimals, and integers and develop fluency in their use.

**Add/Subtract Fractions**Adding or substracting fractions means to add or subtract the numerators and write the sum over the common denominator. Read more...iWorksheets :9Study Guides :1**Multiply / Divide Fractions**FreeTo multiply two fractions with unlike denominators, multiply the numerators and multiply the denominators. It is unnecessary to change the denominators for this operation. Read more...iWorksheets :6Study Guides :1**Multiply Fractions**Multiplying fractions is the operation of multiplying two or more fractions together to find a product. Read more...iWorksheets :3Study Guides :1**Using Integers**Integers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive
integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1**Decimal Operations**Decimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets :3Study Guides :1**Fraction Operations**Fraction operations are the processes of adding, subtracting, multiplying and dividing fractions and mixed numbers. A mixed number is a fraction with a whole number. Adding fractions is common in many everyday events, such as making a recipe and measuring wood. In order to add and subtract fractions, the fractions must have the same denominator. Read more...iWorksheets :3Study Guides :1**Integer operations**Integer operations are the mathematical operations that involve integers. Integers are negative numbers, zero and positive numbers. Adding and subtracting integers are useful in everyday life because there are many situations that involved negative numbers such as calculating sea level or temperatures. Equations with integers are solved using inverse operations. Addition and subtraction are inverse operations, and multiplication and division are inverse operations of each other. Read more...iWorksheets :4Study Guides :1**Rational numbers and operations**A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. A square root of a number is a number that when multiplied by itself will result in the original number. The square root of 4 is 2 because 2 · 2 = 4. Read more...iWorksheets :3Study Guides :1##### 1.3.3. Develop and use strategies to estimate the results of rational-number computations and judge the reasonableness of the results.

**Estimation**Estimation is the process of rounding a number either up or down to the nearest place value requested. Estimation makes it easier to perform mathematical operations quickly. Read more...iWorksheets :6Study Guides :1##### 1.3.4. Develop, analyze, and explain methods for solving problems involving proportions, such as scaling and finding equivalent ratios.

**Ratio**A ratio is a comparison of two numbers. The two numbers must have
the same unit in order to be compared. Read more...iWorksheets :3Study Guides :1**Simple Proportions**A proportion is a statement that two ratios are equal. A ratio is a pair of numbers used to show a comparison. To solve a proportion, calculate equivalent fractions in order to be sure the two fractions (ratios) are equal. Read more...iWorksheets :3Study Guides :1**Numerical Proportions**Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1**Geometric Proportions**Geometric proportions compare two similar polygons. Similar polygons have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :4Study Guides :1**Ratios, proportions and percents**Numerical proportions compare two numbers. A proportion is usually in the form of a:b or a/b. There are 4 parts to a proportion and it can be solved when 3 of the 4 parts are known. Proportions can be solved using the Cross Product Property, which states that the cross products of a proportion are equal. Read more...iWorksheets :4Study Guides :1**Similarity and scale**Similarity refers to similar figures and the ability to compare them using proportions. Similar figures have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :7Study Guides :1**Numbers and percents**Numbers and percents refer to the relationship between fractions, decimals, and percents. A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Fractions and decimals can easily be changed into percent. There are three cases of percent. Read more...iWorksheets :3Study Guides :1### N.2. Algebra (NCTM)

#### 2.1. Understand patterns, relations, and functions.

##### 2.1.1. Represent, analyze, and generalize a variety of patterns with tables, graphs, words, and, when possible, symbolic rules.

**Number Patterns**A number pattern is a group of numbers that are related to one another in some sort of pattern. Finding a pattern is a simpler way to solve a problem. Read more...iWorksheets :3Study Guides :1**Introduction to Functions**A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :7Study Guides :1**Sequences**A sequence is an ordered list of numbers. Sequences are the result of a pattern or rule. A pattern or rule can be every other number or some formula such as y = 2x + 3. When a pattern or rule is given, a sequence can be found. When a sequence is given, the pattern or rule can be found. Read more...iWorksheets :5Study Guides :1#### 2.2. Represent and analyze mathematical situations and structures using algebraic symbols.

##### 2.2.1. Develop an initial conceptual understanding of different uses of variables.

**Introduction to Algebra**Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :4Study Guides :1**Solving equations and inequalities**Algebraic equations are mathematical equations that contain a letter or variable which represents a number. To solve an algebraic equation, inverse operations are used. Algebraic inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to, ≥; less than, <; and less than or equal to, ≤. When multiplying or dividing by a negative number occurs, the inequality sign is reversed from the original inequality sign in order for the inequality to be correct. Read more...iWorksheets :3Study Guides :1##### 2.2.2. Explore relationships between symbolic expressions and graphs of lines, paying particular attention to the meaning of intercept and slope.

**Introduction to Functions**A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :7Study Guides :1**Nonlinear Functions and Set Theory**A function can be in the form of y = mx + b. This is an equation of a line, so it is said to be a linear function. Nonlinear functions are functions that are not straight lines. Some examples of nonlinear functions are exponential functions
and parabolic functions. An exponential function, y = aˆx, is a curved line that gets closer to but does not touch the x-axis. A parabolic function, y = ax² + bx +c, is a U-shaped line that can either be facing up or facing down. Read more...iWorksheets :5Study Guides :1**Linear equations**Linear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :6Study Guides :1##### 2.2.3. Use symbolic algebra to represent situations and to solve problems, especially those that involve linear relationships.

**Simple Algebra**Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1**Introduction to Algebra**Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :4Study Guides :1**Equations and Inequalities**Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :6Study Guides :1**Algebraic Inequalities**FreeAlgebraic inequalities are mathematical equations that compare two quantities using these criteria: greater than, less than, less than or equal to, greater than or equal to. The only rule of inequalities that must be remembered is that when a variable is multiplied or divided by a negative number the sign is reversed. Read more...iWorksheets :3Study Guides :1**Equations and inequalities**An equation is mathematical statement that shows that two expressions are equal to each other. The expressions used in an equation can contain variables or numbers. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Inequalities are also solved by using inverse operations. Read more...iWorksheets :3Study Guides :1**Solving linear equations**When graphed, a linear equation is a straight line. Although the standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept, linear equations often have both of the variables on the same side of the equal sign. Linear equations can be solved for one variable when the other variable is given. Read more...iWorksheets :5Study Guides :1##### 2.2.4. Recognize and generate equivalent forms for simple algebraic expressions and solve linear equations

**Algebraic Equations**FreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1**Introduction to Algebra**Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :4Study Guides :1**Equations and Inequalities**Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :6Study Guides :1**Equations and inequalities**An equation is mathematical statement that shows that two expressions are equal to each other. The expressions used in an equation can contain variables or numbers. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Inequalities are also solved by using inverse operations. Read more...iWorksheets :3Study Guides :1**Integer operations**Integer operations are the mathematical operations that involve integers. Integers are negative numbers, zero and positive numbers. Adding and subtracting integers are useful in everyday life because there are many situations that involved negative numbers such as calculating sea level or temperatures. Equations with integers are solved using inverse operations. Addition and subtraction are inverse operations, and multiplication and division are inverse operations of each other. Read more...iWorksheets :4Study Guides :1#### 2.3. Use mathematical models to represent and understand quantitative relationships.

##### 2.3.1. Model and solve contextualized problems using various representations, such as graphs, tables, and equations.

**Formulas**The formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1**Algebraic Equations**What are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. When algebraic equations are written in words, the words must be changed into the appropriate numbers and variable in order to solve. Read more...iWorksheets :5Study Guides :1#### 2.4. Analyze change in various contexts.

##### 2.4.1. Use graphs to analyze the nature of changes in quantities in linear relationships.

**Nonlinear Functions and Set Theory**A function can be in the form of y = mx + b. This is an equation of a line, so it is said to be a linear function. Nonlinear functions are functions that are not straight lines. Some examples of nonlinear functions are exponential functions
and parabolic functions. An exponential function, y = aˆx, is a curved line that gets closer to but does not touch the x-axis. A parabolic function, y = ax² + bx +c, is a U-shaped line that can either be facing up or facing down. Read more...iWorksheets :5Study Guides :1### N.3. Geometry (NCTM)

#### 3.1. Analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships.

##### 3.1.1. Precisely describe, classify, and understand relationships among types of two- and three-dimensional objects using their defining properties.

**Perimeter**A perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. Read more...iWorksheets :3Study Guides :1**Plane Figures: Lines and Angles**Plane figures in regards to lines and angles refer to the coordinate plane and the various lines and angles within the coordinate plane. Lines in a coordinate plane can be parallel or perpendicular. Angles in a coordinate plane can be acute, obtuse, right or straight. Adjacent angles are two angles that have a common vertex and a common side but do not overlap. Read more...iWorksheets :3Study Guides :1**Plane Figures: Closed Figure Relationships**Plane figures in regards to closed figure relationships refer to the coordinate plane and congruent figures, circles, circle graphs, transformations and symmetry. Congruent figures have the same size and shape. Transformations are made up of translations, rotations and reflections. A translation of a figure keeps the size and shape of a figure, but moves it to a different location. A rotation turns a figure about a point on the figure. A reflection of a figure produces a mirror image of the figure when it is reflected in a given line. Read more...iWorksheets :3Study Guides :1**Exploring Area and Surface Area**Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the
base and h is the height. Read more...iWorksheets :4Study Guides :1**Finding Volume**Volume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1**Plane figures**Plane figures refer to points, lines, angles, and planes in the coordinate plane. Lines can be parallel or perpendicular. Angles can be categorized as acute, obtuse or right. Angles can also be complementary or supplementary depending on how many degrees they add up to. Plane figures can also refer to shapes in the coordinate plane. Triangles, quadrilaterals and other polygons can be shown in the coordinate plane. Read more...iWorksheets :4Study Guides :1**Perimeter and area**What Is Perimeter and Area? Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To find the perimeter of any figure, simply add up the measures of the sides of the figure. Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1**Three dimensional geometry/Measurement**Three-dimensional geometry/measurement refers to three-dimensional (3D) shapes and the measurement of their shapes concerning volume and surface area. The figures of prisms, cylinders, pyramids, cones and spheres are all 3D figures. Volume measures the amount a solid figure can hold. Volume is measured in terms of units³ and can be measured in inches, feet, meters, centimeters, and millimeters. Read more...iWorksheets :11Study Guides :1##### 3.1.2. Understand relationships among the angles, side lengths, perimeters, areas, and volumes of similar objects.

**Geometric Proportions**Geometric proportions compare two similar polygons. Similar polygons have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :4Study Guides :1**Ratios, proportions and percents**Numerical proportions compare two numbers. A proportion is usually in the form of a:b or a/b. There are 4 parts to a proportion and it can be solved when 3 of the 4 parts are known. Proportions can be solved using the Cross Product Property, which states that the cross products of a proportion are equal. Read more...iWorksheets :4Study Guides :1**Similarity and scale**Similarity refers to similar figures and the ability to compare them using proportions. Similar figures have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :7Study Guides :1##### 3.1.3. Create and critique inductive and deductive arguments concerning geometric ideas and relationships, such as congruence, similarity, and the Pythagorean relationship.

**Geometric Proportions**Geometric proportions compare two similar polygons. Similar polygons have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :4Study Guides :1**Plane Figures: Lines and Angles**Plane figures in regards to lines and angles refer to the coordinate plane and the various lines and angles within the coordinate plane. Lines in a coordinate plane can be parallel or perpendicular. Angles in a coordinate plane can be acute, obtuse, right or straight. Adjacent angles are two angles that have a common vertex and a common side but do not overlap. Read more...iWorksheets :3Study Guides :1**Plane Figures: Closed Figure Relationships**Plane figures in regards to closed figure relationships refer to the coordinate plane and congruent figures, circles, circle graphs, transformations and symmetry. Congruent figures have the same size and shape. Transformations are made up of translations, rotations and reflections. A translation of a figure keeps the size and shape of a figure, but moves it to a different location. A rotation turns a figure about a point on the figure. A reflection of a figure produces a mirror image of the figure when it is reflected in a given line. Read more...iWorksheets :3Study Guides :1**The Pythagorean Theorem**Pythagorean Theorem is a fundamental relation in Euclidean geometry. It states the sum of the squares of the legs of a right triangle equals the square of the length
of the hypotenuse. Determine the distance between two points using the Pythagorean Theorem. Read more...iWorksheets :10Study Guides :2**Patterns in geometry**Patterns in geometry refer to shapes and their measures. Shapes can be congruent to one another. Shapes can also be manipulated to form similar shapes. The types of transformations are reflection, rotation, dilation and translation. With a reflection, a figure is reflected, or flipped, in a line so that the new figure is a mirror image on the other side of the line. A rotation rotates, or turns, a shape to make a new figure. A dilation shrinks or enlarges a figure. A translation shifts a figure to a new position. Read more...iWorksheets :3Study Guides :1**Ratios, proportions and percents**Numerical proportions compare two numbers. A proportion is usually in the form of a:b or a/b. There are 4 parts to a proportion and it can be solved when 3 of the 4 parts are known. Proportions can be solved using the Cross Product Property, which states that the cross products of a proportion are equal. Read more...iWorksheets :4Study Guides :1**Similarity and scale**Similarity refers to similar figures and the ability to compare them using proportions. Similar figures have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :7Study Guides :1#### 3.2. Specify locations and describe spatial relationships using coordinate geometry and other representational systems.

##### 3.2.1. Use coordinate geometry to represent and examine the properties of geometric shapes.

**Area of Coordinate Polygons**Calculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1**Plane figures**Plane figures refer to points, lines, angles, and planes in the coordinate plane. Lines can be parallel or perpendicular. Angles can be categorized as acute, obtuse or right. Angles can also be complementary or supplementary depending on how many degrees they add up to. Plane figures can also refer to shapes in the coordinate plane. Triangles, quadrilaterals and other polygons can be shown in the coordinate plane. Read more...iWorksheets :4Study Guides :1##### 3.2.2. Use coordinate geometry to examine special geometric shapes, such as regular polygons or those with pairs of parallel or perpendicular sides.

**Area of Coordinate Polygons**Calculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1**Plane figures**Plane figures refer to points, lines, angles, and planes in the coordinate plane. Lines can be parallel or perpendicular. Angles can be categorized as acute, obtuse or right. Angles can also be complementary or supplementary depending on how many degrees they add up to. Plane figures can also refer to shapes in the coordinate plane. Triangles, quadrilaterals and other polygons can be shown in the coordinate plane. Read more...iWorksheets :4Study Guides :1#### 3.3. Apply transformations and use symmetry to analyze mathematical situations.

##### 3.3.1. Describe sizes, positions, and orientations of shapes under informal transformations such as flips, turns, slides, and scaling.

**Patterns in geometry**Patterns in geometry refer to shapes and their measures. Shapes can be congruent to one another. Shapes can also be manipulated to form similar shapes. The types of transformations are reflection, rotation, dilation and translation. With a reflection, a figure is reflected, or flipped, in a line so that the new figure is a mirror image on the other side of the line. A rotation rotates, or turns, a shape to make a new figure. A dilation shrinks or enlarges a figure. A translation shifts a figure to a new position. Read more...iWorksheets :3Study Guides :1**Similarity and scale**Similarity refers to similar figures and the ability to compare them using proportions. Similar figures have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :7Study Guides :1##### 3.3.2. Examine the congruence, similarity, and line or rotational symmetry of objects using transformations.

**Patterns in geometry**Patterns in geometry refer to shapes and their measures. Shapes can be congruent to one another. Shapes can also be manipulated to form similar shapes. The types of transformations are reflection, rotation, dilation and translation. With a reflection, a figure is reflected, or flipped, in a line so that the new figure is a mirror image on the other side of the line. A rotation rotates, or turns, a shape to make a new figure. A dilation shrinks or enlarges a figure. A translation shifts a figure to a new position. Read more...iWorksheets :3Study Guides :1#### 3.4. Use visualization, spatial reasoning, and geometric modeling to solve problems.

##### 3.4.4. Use geometric models to represent and explain numerical and algebraic relationships.

**Perimeter**A perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. Read more...iWorksheets :3Study Guides :1**Volume**Volume measures the amount a solid figure can hold. Read more...iWorksheets :3Study Guides :1**Diameter of Circle**The diameter of a circle is a line segment that passes through the center of a circle connecting one side of the circle to the other. Read more...iWorksheets :3Study Guides :1**Area**An area is the amount of surface a shape covers. <br>An area is measured in inches, feet, meters or centimeters. Read more...iWorksheets :3Study Guides :1**Area of Coordinate Polygons**Calculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1**Area and Circumference of Circles**FreeThe circumference of a circle is the distance around the outside. The area of a circle is the space contained within the circumference. It is measured in square units. Read more...iWorksheets :4Study Guides :1**Measurement, Perimeter, and Circumference**There are two systems used to measure objects, the U.S. Customary system and the metric system. The U.S. Customary system measures length in inches, feet, yards and miles. The metric system is a base ten system and measures length in kilometers, meters, and millimeters. Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To get the perimeter of any figure, simply add up the measures of the sides of the figure. Read more...iWorksheets :3Study Guides :1**Exploring Area and Surface Area**Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the
base and h is the height. Read more...iWorksheets :4Study Guides :1**Finding Volume**Volume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1**Perimeter and area**What Is Perimeter and Area? Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To find the perimeter of any figure, simply add up the measures of the sides of the figure. Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1**Three dimensional geometry/Measurement**Three-dimensional geometry/measurement refers to three-dimensional (3D) shapes and the measurement of their shapes concerning volume and surface area. The figures of prisms, cylinders, pyramids, cones and spheres are all 3D figures. Volume measures the amount a solid figure can hold. Volume is measured in terms of units³ and can be measured in inches, feet, meters, centimeters, and millimeters. Read more...iWorksheets :11Study Guides :1### N.4. Measurement (NCTM)

#### 4.1. Understand measurable attributes of objects and the units, systems, and processes of measurement.

##### 4.1.2. Understand relationships among units and convert from one unit to another within the same system.

**Measurement**FreeThere are many units of measurement: inches, feet, yards, miles,
millimeters, meters, seconds, minutes, hours, cups, pints, quarts,
gallons, ounces, pounds, etc Read more...iWorksheets :6Study Guides :1##### 4.1.3. Understand, select, and use units of appropriate size and type to measure angles, perimeter, area, surface area, and volume.

**Measurement**FreeThere are many units of measurement: inches, feet, yards, miles,
millimeters, meters, seconds, minutes, hours, cups, pints, quarts,
gallons, ounces, pounds, etc Read more...iWorksheets :6Study Guides :1**Plane Figures: Lines and Angles**Plane figures in regards to lines and angles refer to the coordinate plane and the various lines and angles within the coordinate plane. Lines in a coordinate plane can be parallel or perpendicular. Angles in a coordinate plane can be acute, obtuse, right or straight. Adjacent angles are two angles that have a common vertex and a common side but do not overlap. Read more...iWorksheets :3Study Guides :1#### 4.2. Apply appropriate techniques, tools, and formulas to determine measurements.

##### 4.2.2. Select and apply techniques and tools to accurately find length, area, volume, and angle measures to appropriate levels of precision.

**Volume**Volume measures the amount a solid figure can hold. Read more...iWorksheets :3Study Guides :1**Diameter of Circle**The diameter of a circle is a line segment that passes through the center of a circle connecting one side of the circle to the other. Read more...iWorksheets :3Study Guides :1**Area**An area is the amount of surface a shape covers. <br>An area is measured in inches, feet, meters or centimeters. Read more...iWorksheets :3Study Guides :1**Formulas**The formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1**Area of Coordinate Polygons**Calculate the area of basic polygons drawn on a coordinate plane. Coordinate plane is a grid on which points can be plotted. The horizontal axis is labeled with positive numbers to the right of the vertical axis and negative numbers to the left of the vertical axis. Read more...iWorksheets :3Study Guides :1**Area and Circumference of Circles**FreeThe circumference of a circle is the distance around the outside. The area of a circle is the space contained within the circumference. It is measured in square units. Read more...iWorksheets :4Study Guides :1**Plane Figures: Lines and Angles**Plane figures in regards to lines and angles refer to the coordinate plane and the various lines and angles within the coordinate plane. Lines in a coordinate plane can be parallel or perpendicular. Angles in a coordinate plane can be acute, obtuse, right or straight. Adjacent angles are two angles that have a common vertex and a common side but do not overlap. Read more...iWorksheets :3Study Guides :1**Measurement, Perimeter, and Circumference**There are two systems used to measure objects, the U.S. Customary system and the metric system. The U.S. Customary system measures length in inches, feet, yards and miles. The metric system is a base ten system and measures length in kilometers, meters, and millimeters. Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To get the perimeter of any figure, simply add up the measures of the sides of the figure. Read more...iWorksheets :3Study Guides :1**Exploring Area and Surface Area**Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the
base and h is the height. Read more...iWorksheets :4Study Guides :1**Finding Volume**Volume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1**Perimeter and area**What Is Perimeter and Area? Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To find the perimeter of any figure, simply add up the measures of the sides of the figure. Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1**Three dimensional geometry/Measurement**Three-dimensional geometry/measurement refers to three-dimensional (3D) shapes and the measurement of their shapes concerning volume and surface area. The figures of prisms, cylinders, pyramids, cones and spheres are all 3D figures. Volume measures the amount a solid figure can hold. Volume is measured in terms of units³ and can be measured in inches, feet, meters, centimeters, and millimeters. Read more...iWorksheets :11Study Guides :1##### 4.2.3. Develop and use formulas to determine the circumference of circles and the area of triangles, parallelograms, trapezoids, and circles and develop strategies to find the area of more-complex shapes.

**Diameter of Circle**The diameter of a circle is a line segment that passes through the center of a circle connecting one side of the circle to the other. Read more...iWorksheets :3Study Guides :1**Area**An area is the amount of surface a shape covers. <br>An area is measured in inches, feet, meters or centimeters. Read more...iWorksheets :3Study Guides :1**Formulas**The formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1**Area and Circumference of Circles**FreeThe circumference of a circle is the distance around the outside. The area of a circle is the space contained within the circumference. It is measured in square units. Read more...iWorksheets :4Study Guides :1**Measurement, Perimeter, and Circumference**There are two systems used to measure objects, the U.S. Customary system and the metric system. The U.S. Customary system measures length in inches, feet, yards and miles. The metric system is a base ten system and measures length in kilometers, meters, and millimeters. Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To get the perimeter of any figure, simply add up the measures of the sides of the figure. Read more...iWorksheets :3Study Guides :1**Exploring Area and Surface Area**Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the
base and h is the height. Read more...iWorksheets :4Study Guides :1**Perimeter and area**What Is Perimeter and Area? Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To find the perimeter of any figure, simply add up the measures of the sides of the figure. Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1##### 4.2.4. Develop strategies to determine the surface area and volume of selected prisms, pyramids, and cylinders.

**Volume**Volume measures the amount a solid figure can hold. Read more...iWorksheets :3Study Guides :1**Exploring Area and Surface Area**Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the
base and h is the height. Read more...iWorksheets :4Study Guides :1**Finding Volume**Volume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1**Three dimensional geometry/Measurement**Three-dimensional geometry/measurement refers to three-dimensional (3D) shapes and the measurement of their shapes concerning volume and surface area. The figures of prisms, cylinders, pyramids, cones and spheres are all 3D figures. Volume measures the amount a solid figure can hold. Volume is measured in terms of units³ and can be measured in inches, feet, meters, centimeters, and millimeters. Read more...iWorksheets :11Study Guides :1##### 4.2.5. Solve problems involving scale factors, using ratio and proportion.

**Geometric Proportions**Geometric proportions compare two similar polygons. Similar polygons have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :4Study Guides :1**Ratios, proportions and percents**Numerical proportions compare two numbers. A proportion is usually in the form of a:b or a/b. There are 4 parts to a proportion and it can be solved when 3 of the 4 parts are known. Proportions can be solved using the Cross Product Property, which states that the cross products of a proportion are equal. Read more...iWorksheets :4Study Guides :1**Similarity and scale**Similarity refers to similar figures and the ability to compare them using proportions. Similar figures have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :7Study Guides :1##### 4.2.6. Solve simple problems involving rates and derived measurements for such attributes as velocity and density.

**Numerical Proportions**Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1**Ratios, proportions and percents**Numerical proportions compare two numbers. A proportion is usually in the form of a:b or a/b. There are 4 parts to a proportion and it can be solved when 3 of the 4 parts are known. Proportions can be solved using the Cross Product Property, which states that the cross products of a proportion are equal. Read more...iWorksheets :4Study Guides :1### N.5. Data Analysis and Probability (NCTM)

#### 5.1. Formulate questions that can be addressed with data and collect, organize, and display relevant data to answer them.

##### 5.1.1. Formulate questions, design studies, and collect data about a characteristic shared by two populations or different characteristics within one population.

**Collecting and describing data**Collecting and describing data refers to the different ways to gather data and the different ways to arrange data whether it is in a table, graph, or pie chart. Data can be collected by either taking a sample of a population or by conducting a survey. Describing data looks at data after it has been organized and makes conclusions about the data. Read more...iWorksheets :3Study Guides :1**Experimental Probability**FreeExperimental probability is the probability that a certain outcome will occur based on an experiment being performed multiple times. Probability word problems worksheets. Read more...iWorksheets :3Study Guides :1##### 5.1.2. Select, create, and use appropriate graphical representations of data, including histograms, box plots, and scatterplots.

**Graphs**FreeA graph is a diagram that shows information in an organized way. Read more...iWorksheets :15Study Guides :1**Analyzing, Graphing and Displaying Data**There are many types of graphs such as, bar graphs, histograms and line graphs. A bar graph compares data in categories and uses bars, either vertical or horizontal. A histogram is similar to a bar graph, but with histograms the bars touch each other where with bar graphs the bars do not touch each other. A line graph is useful for graphing how data changes over time. With a line graph, data is plotted as points and lines are drawn to connect the points to show how the data changes. Read more...iWorksheets :6Study Guides :1**Using graphs to analyze data**There are different types of graphs and ways that data can be analyzed using the graphs. Graphs are based on the coordinate plane. Data are the points on the plane. If collecting data about the ages of people living on one street, the data is all the ages. The data can then be organized into groups, and evaluated. Mean, mode and median are different ways to evaluate data. Read more...iWorksheets :7Study Guides :1**Displaying data**Displaying data refers to the many ways that data can be displayed whether it is on a bar graph, line graph, circle graph, pictograph, line plot, scatter plot or another way. Certain data is better displayed with different graphs as opposed to other graphs. E.g. if data representing the cost of a movie over the past 5 years were to be displayed, a line graph would be best. A circle graph would not be appropriate to use because a circle graph represents data that can add up to one or 100%. Read more...iWorksheets :4Study Guides :1#### 5.2. Select and use appropriate statistical methods to analyze data.

##### 5.2.1. Find, use, and interpret measures of center and spread, including mean and interquartile range.

**Statistics**A statistic is a collection of numbers related to a specific topic. Read more...iWorksheets :6Study Guides :1**Organizing Data**The data can be organized into groups, and evaluated. Mean, mode, median and range are different ways to evaluate data. The mean is the average of the data. The mode refers to the number that occurs the most often in the data. The median is the middle number when the data is arranged in order from lowest to highest. The range is the difference in numbers when the lowest number is subtracted from the highest number. Data can be organized into a table, such as a frequency table. Read more...iWorksheets :3Study Guides :1**Using graphs to analyze data**There are different types of graphs and ways that data can be analyzed using the graphs. Graphs are based on the coordinate plane. Data are the points on the plane. If collecting data about the ages of people living on one street, the data is all the ages. The data can then be organized into groups, and evaluated. Mean, mode and median are different ways to evaluate data. Read more...iWorksheets :7Study Guides :1**Collecting and describing data**Collecting and describing data refers to the different ways to gather data and the different ways to arrange data whether it is in a table, graph, or pie chart. Data can be collected by either taking a sample of a population or by conducting a survey. Describing data looks at data after it has been organized and makes conclusions about the data. Read more...iWorksheets :3Study Guides :1##### 5.2.2. Discuss and understand the correspondence between data sets and their graphical representations, especially histograms, stem-and-leaf plots, box plots, and scatterplots.

**Tables**Tables refer to the different types of diagram used to display data. <br>There are many types of tables such as data table, frequency table, line chart and stern-and-leaf plot. Read more...iWorksheets :3Study Guides :1**Graphs**FreeA graph is a diagram that shows information in an organized way. Read more...iWorksheets :15Study Guides :1**Analyzing, Graphing and Displaying Data**There are many types of graphs such as, bar graphs, histograms and line graphs. A bar graph compares data in categories and uses bars, either vertical or horizontal. A histogram is similar to a bar graph, but with histograms the bars touch each other where with bar graphs the bars do not touch each other. A line graph is useful for graphing how data changes over time. With a line graph, data is plotted as points and lines are drawn to connect the points to show how the data changes. Read more...iWorksheets :6Study Guides :1**Using graphs to analyze data**There are different types of graphs and ways that data can be analyzed using the graphs. Graphs are based on the coordinate plane. Data are the points on the plane. If collecting data about the ages of people living on one street, the data is all the ages. The data can then be organized into groups, and evaluated. Mean, mode and median are different ways to evaluate data. Read more...iWorksheets :7Study Guides :1**Displaying data**Displaying data refers to the many ways that data can be displayed whether it is on a bar graph, line graph, circle graph, pictograph, line plot, scatter plot or another way. Certain data is better displayed with different graphs as opposed to other graphs. E.g. if data representing the cost of a movie over the past 5 years were to be displayed, a line graph would be best. A circle graph would not be appropriate to use because a circle graph represents data that can add up to one or 100%. Read more...iWorksheets :4Study Guides :1#### 5.3. Develop and evaluate inferences and predictions that are based on data.

##### 5.3.2. Make conjectures about possible relationships between two characteristics of a sample on the basis of scatterplots of the data and approximate lines of fit.

**Analyzing, Graphing and Displaying Data**There are many types of graphs such as, bar graphs, histograms and line graphs. A bar graph compares data in categories and uses bars, either vertical or horizontal. A histogram is similar to a bar graph, but with histograms the bars touch each other where with bar graphs the bars do not touch each other. A line graph is useful for graphing how data changes over time. With a line graph, data is plotted as points and lines are drawn to connect the points to show how the data changes. Read more...iWorksheets :6Study Guides :1**Using graphs to analyze data**There are different types of graphs and ways that data can be analyzed using the graphs. Graphs are based on the coordinate plane. Data are the points on the plane. If collecting data about the ages of people living on one street, the data is all the ages. The data can then be organized into groups, and evaluated. Mean, mode and median are different ways to evaluate data. Read more...iWorksheets :7Study Guides :1**Displaying data**Displaying data refers to the many ways that data can be displayed whether it is on a bar graph, line graph, circle graph, pictograph, line plot, scatter plot or another way. Certain data is better displayed with different graphs as opposed to other graphs. E.g. if data representing the cost of a movie over the past 5 years were to be displayed, a line graph would be best. A circle graph would not be appropriate to use because a circle graph represents data that can add up to one or 100%. Read more...iWorksheets :4Study Guides :1**Linear relationships**Linear relationships refer to two quantities that are related with a linear equation. Since a linear equation is a line, a linear relationship refers to two quantities on a line and their relationship to one another. This relationship can be direct or inverse. If y varies directly as x, it means if y is doubled, then x is doubled. The formula for a direct variation is y = kx, where k is the constant of variation. Read more...iWorksheets :3Study Guides :1##### 5.3.3. Use conjectures to formulate new questions and plan new studies to answer them.

**Collecting and describing data**Collecting and describing data refers to the different ways to gather data and the different ways to arrange data whether it is in a table, graph, or pie chart. Data can be collected by either taking a sample of a population or by conducting a survey. Describing data looks at data after it has been organized and makes conclusions about the data. Read more...iWorksheets :3Study Guides :1**Experimental Probability**FreeExperimental probability is the probability that a certain outcome will occur based on an experiment being performed multiple times. Probability word problems worksheets. Read more...iWorksheets :3Study Guides :1#### 5.4. Understand and apply basic concepts of probability

##### 5.4.2. Use proportionality and a basic understanding of probability to make and test conjectures about the results of experiments and simulations.

**Introduction to Probability**Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read more...iWorksheets :4Study Guides :1**Experimental Probability**FreeExperimental probability is the probability that a certain outcome will occur based on an experiment being performed multiple times. Probability word problems worksheets. Read more...iWorksheets :3Study Guides :1##### 5.4.3. Compute probabilities for simple compound events, using such methods as organized lists, tree diagrams, and area models.

**Using Probability**Probability is the possibility that a certain event will occur. Probability is the chance of an event occurring divided by the total number of possible outcomes. Probability is based on whether events are dependent or independent of each other. An independent event refers to the outcome of one event not affecting the outcome of another event. A dependent event is when the outcome of one event does affect the outcome of the other event. Probability word problems. Read more...iWorksheets :3Study Guides :1### N.6. Problem Solving (NCTM)

#### 6.1. Build new mathematical knowledge through problem solving.

**Mathematical processes**Mathematical processes refer to the skills and strategies needed in order to solve mathematical problems. If one strategy does not help to find the solution to a problem, using another strategy may help to solve it. Problem solving skills refer to the math techniques that must be used to solve a problem. If a problem were to determine the perimeter of a square, a needed skill would be the knowledge of what perimeter means and the ability to add the numbers. Read more...iWorksheets :3Study Guides :1#### 6.2. Solve problems that arise in mathematics and in other contexts.

**Mathematical processes**Mathematical processes refer to the skills and strategies needed in order to solve mathematical problems. If one strategy does not help to find the solution to a problem, using another strategy may help to solve it. Problem solving skills refer to the math techniques that must be used to solve a problem. If a problem were to determine the perimeter of a square, a needed skill would be the knowledge of what perimeter means and the ability to add the numbers. Read more...iWorksheets :3Study Guides :1#### 6.3. Apply and adapt a variety of appropriate strategies to solve problems.

**Mathematical processes**Mathematical processes refer to the skills and strategies needed in order to solve mathematical problems. If one strategy does not help to find the solution to a problem, using another strategy may help to solve it. Problem solving skills refer to the math techniques that must be used to solve a problem. If a problem were to determine the perimeter of a square, a needed skill would be the knowledge of what perimeter means and the ability to add the numbers. Read more...iWorksheets :3Study Guides :1### N.7. Reasoning and Proof (NCTM)

#### 7.1. Recognize reasoning and proof as fundamental aspects of mathematics.

**Mathematical processes**Mathematical processes refer to the skills and strategies needed in order to solve mathematical problems. If one strategy does not help to find the solution to a problem, using another strategy may help to solve it. Problem solving skills refer to the math techniques that must be used to solve a problem. If a problem were to determine the perimeter of a square, a needed skill would be the knowledge of what perimeter means and the ability to add the numbers. Read more...iWorksheets :3Study Guides :1#### 7.2. Make and investigate mathematical conjectures.

**Mathematical processes**Mathematical processes refer to the skills and strategies needed in order to solve mathematical problems. If one strategy does not help to find the solution to a problem, using another strategy may help to solve it. Problem solving skills refer to the math techniques that must be used to solve a problem. If a problem were to determine the perimeter of a square, a needed skill would be the knowledge of what perimeter means and the ability to add the numbers. Read more...iWorksheets :3Study Guides :1#### 7.3. Develop and evaluate mathematical arguments and proofs.

**Mathematical processes**Mathematical processes refer to the skills and strategies needed in order to solve mathematical problems. If one strategy does not help to find the solution to a problem, using another strategy may help to solve it. Problem solving skills refer to the math techniques that must be used to solve a problem. If a problem were to determine the perimeter of a square, a needed skill would be the knowledge of what perimeter means and the ability to add the numbers. Read more...iWorksheets :3Study Guides :1#### 7.4. Select and use various types of reasoning and methods of proof.

**Mathematical processes**Mathematical processes refer to the skills and strategies needed in order to solve mathematical problems. If one strategy does not help to find the solution to a problem, using another strategy may help to solve it. Problem solving skills refer to the math techniques that must be used to solve a problem. If a problem were to determine the perimeter of a square, a needed skill would be the knowledge of what perimeter means and the ability to add the numbers. Read more...iWorksheets :3Study Guides :1### N.9. Connections (NCTM)

#### 9.2. Understand how mathematical ideas interconnect and build on one another to produce a coherent whole.

**Mathematical processes**Mathematical processes refer to the skills and strategies needed in order to solve mathematical problems. If one strategy does not help to find the solution to a problem, using another strategy may help to solve it. Problem solving skills refer to the math techniques that must be used to solve a problem. If a problem were to determine the perimeter of a square, a needed skill would be the knowledge of what perimeter means and the ability to add the numbers. Read more...iWorksheets :3Study Guides :1### N.11. Grade 7 Curriculum Focal Points (NCTM)

#### 11.1. Number and Operations and Algebra and Geometry: Developing an understanding of and applying proportionality, including similarity

##### 11.1.1. Students extend their work with ratios to develop an understanding of proportionality that they apply to solve single and multi-step problems in numerous contexts. They use ratio and proportionality to solve a wide variety of percent problems, including problems involving discounts, interest, taxes, tips, and percent increase or decrease. They also solve problems about similar objects (including figures) by using scale factors that relate corresponding lengths of the objects or by using the fact that relationships of lengths within an object are preserved in similar objects. Students graph proportional relationships and identify the unit rate as the slope of the related line. They distinguish proportional relationships (y/x = k, or y = kx) from other relationships, including inverse proportionality (xy = k, or y = k/x).

**Percent, Rate, Base**A percent is a way of comparing a number with 100. Percents are usually written with a percent sign. To solve a percent problem, multiply the value by the percent using
one of the representations for the percent. Read more...iWorksheets :3Study Guides :1**Ratio**A ratio is a comparison of two numbers. The two numbers must have
the same unit in order to be compared. Read more...iWorksheets :3Study Guides :1**Simple Proportions**A proportion is a statement that two ratios are equal. A ratio is a pair of numbers used to show a comparison. To solve a proportion, calculate equivalent fractions in order to be sure the two fractions (ratios) are equal. Read more...iWorksheets :3Study Guides :1**Numerical Proportions**Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1**Introduction to Percent**What Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets :4Study Guides :1**Applying Percents**Applying percents is a term that refers to the different ways that percents can be used. The percent of change refers to the percent an amount either increases or decreases based on the previous amounts or numbers. Applying percents also means to calculate simple interest using the interest equation, I = P · r · t, where P is the principal; r is the rate and t is the time. Read more...iWorksheets :3Study Guides :1**Ratios, proportions and percents**Numerical proportions compare two numbers. A proportion is usually in the form of a:b or a/b. There are 4 parts to a proportion and it can be solved when 3 of the 4 parts are known. Proportions can be solved using the Cross Product Property, which states that the cross products of a proportion are equal. Read more...iWorksheets :4Study Guides :1**Similarity and scale**Similarity refers to similar figures and the ability to compare them using proportions. Similar figures have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :7Study Guides :1**Numbers and percents**Numbers and percents refer to the relationship between fractions, decimals, and percents. A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Fractions and decimals can easily be changed into percent. There are three cases of percent. Read more...iWorksheets :3Study Guides :1**Applications of percent**Percent increase or decrease can be found by using the formula: percent of change = actual change/original amount. The change is either an increase, if the amounts went up or a decrease if the amounts went down. If a number changes from 33 to 89, the percent of increase would be: Percent of increase = (89 -33) ÷ 33 = 56 ÷ 33 ≈ 1.6969 ≈ 170% Read more...iWorksheets :4Study Guides :1**Linear relationships**Linear relationships refer to two quantities that are related with a linear equation. Since a linear equation is a line, a linear relationship refers to two quantities on a line and their relationship to one another. This relationship can be direct or inverse. If y varies directly as x, it means if y is doubled, then x is doubled. The formula for a direct variation is y = kx, where k is the constant of variation. Read more...iWorksheets :3Study Guides :1**Functions**FreeA function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1#### 11.2. Measurement and Geometry and Algebra: Developing an understanding of and using formulas to determine surface areas and volumes of three-dimensional shapes

##### 11.2.1. By decomposing two- and three-dimensional shapes into smaller, component shapes, students find surface areas and develop and justify formulas for the surface areas and volumes of prisms and cylinders. As students decompose prisms and cylinders by slicing them, they develop and understand formulas for their volumes (Volume = Area of base x Height). They apply these formulas in problem solving to determine volumes of prisms and cylinders. Students see that the formula for the area of a circle is plausible by decomposing a circle into a number of wedges and rearranging them into a shape that approximates a parallelogram. They select appropriate two- and three-dimensional shapes to model real-world situations and solve a variety of problems (including multi-step problems) involving surface areas, areas and circumferences of circles, and volumes of prisms and cylinders.

**Volume**Volume measures the amount a solid figure can hold. Read more...iWorksheets :3Study Guides :1**Diameter of Circle**The diameter of a circle is a line segment that passes through the center of a circle connecting one side of the circle to the other. Read more...iWorksheets :3Study Guides :1**Area**An area is the amount of surface a shape covers. <br>An area is measured in inches, feet, meters or centimeters. Read more...iWorksheets :3Study Guides :1**Formulas**The formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1**Area and Circumference of Circles**FreeThe circumference of a circle is the distance around the outside. The area of a circle is the space contained within the circumference. It is measured in square units. Read more...iWorksheets :4Study Guides :1**Exploring Area and Surface Area**Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the
base and h is the height. Read more...iWorksheets :4Study Guides :1**Perimeter and area**What Is Perimeter and Area? Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To find the perimeter of any figure, simply add up the measures of the sides of the figure. Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1#### 11.3. Number and Operations and Algebra: Developing an understanding of operations on all rational numbers and solving linear equations

##### 11.3.1. Students extend understandings of addition, subtraction, multiplication, and division, together with their properties, to all rational numbers, including negative integers. By applying properties of arithmetic and considering negative numbers in everyday contexts (e.g., situations of owing money or measuring elevations above and below sea level), students explain why the rules for adding, subtracting, multiplying, and dividing with negative numbers make sense. They use the arithmetic of rational numbers as they formulate and solve linear equations in one variable and use these equations to solve problems. Students make strategic choices of procedures to solve linear equations in one variable and implement them efficiently, understanding that when they use the properties of equality to express an equation in a new way, solutions that they obtain for the new equation also solve the original equation.

**Add/Subtract Fractions**Adding or substracting fractions means to add or subtract the numerators and write the sum over the common denominator. Read more...iWorksheets :9Study Guides :1**Multiply / Divide Fractions**FreeTo multiply two fractions with unlike denominators, multiply the numerators and multiply the denominators. It is unnecessary to change the denominators for this operation. Read more...iWorksheets :6Study Guides :1**Multiply Fractions**Multiplying fractions is the operation of multiplying two or more fractions together to find a product. Read more...iWorksheets :3Study Guides :1**Simple Algebra**Simple algebra is the term used when using expressions with letters or variables that represent numbers. Read more...iWorksheets :3Study Guides :1**Algebraic Equations**FreeWhat are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. Read more...iWorksheets :6Study Guides :1**Introduction to Algebra**Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :4Study Guides :1**Equations and Inequalities**Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :6Study Guides :1**Using Integers**Integers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive
integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1**Decimal Operations**Decimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets :3Study Guides :1**Fraction Operations**Fraction operations are the processes of adding, subtracting, multiplying and dividing fractions and mixed numbers. A mixed number is a fraction with a whole number. Adding fractions is common in many everyday events, such as making a recipe and measuring wood. In order to add and subtract fractions, the fractions must have the same denominator. Read more...iWorksheets :3Study Guides :1**Introduction to Percent**What Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets :4Study Guides :1**Algebraic Equations**What are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. When algebraic equations are written in words, the words must be changed into the appropriate numbers and variable in order to solve. Read more...iWorksheets :5Study Guides :1**Equations and inequalities**An equation is mathematical statement that shows that two expressions are equal to each other. The expressions used in an equation can contain variables or numbers. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Inequalities are also solved by using inverse operations. Read more...iWorksheets :3Study Guides :1**Integer operations**Integer operations are the mathematical operations that involve integers. Integers are negative numbers, zero and positive numbers. Adding and subtracting integers are useful in everyday life because there are many situations that involved negative numbers such as calculating sea level or temperatures. Equations with integers are solved using inverse operations. Addition and subtraction are inverse operations, and multiplication and division are inverse operations of each other. Read more...iWorksheets :4Study Guides :1**Rational numbers and operations**A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. A square root of a number is a number that when multiplied by itself will result in the original number. The square root of 4 is 2 because 2 · 2 = 4. Read more...iWorksheets :3Study Guides :1**Solving linear equations**When graphed, a linear equation is a straight line. Although the standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept, linear equations often have both of the variables on the same side of the equal sign. Linear equations can be solved for one variable when the other variable is given. Read more...iWorksheets :5Study Guides :1**Solving equations and inequalities**Algebraic equations are mathematical equations that contain a letter or variable which represents a number. To solve an algebraic equation, inverse operations are used. Algebraic inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to, ≥; less than, <; and less than or equal to, ≤. When multiplying or dividing by a negative number occurs, the inequality sign is reversed from the original inequality sign in order for the inequality to be correct. Read more...iWorksheets :3Study Guides :1### N.12. Connections to the Grade 7 Focal Points (NCTM)

#### 12.1. Measurement and Geometry: Students connect their work on proportionality with their work on area and volume by investigating similar objects. They understand that if a scale factor describes how corresponding lengths in two similar objects are related, then the square of the scale factor describes how corresponding areas are related, and the cube of the scale factor describes how corresponding volumes are related. Students apply their work on proportionality to measurement in different contexts, including converting among different units of measurement to solve problems involving rates such as motion at a constant speed. They also apply proportionality when they work with the circumference, radius, and diameter of a circle; when they find the area of a sector of a circle; and when they make scale drawings.

**Diameter of Circle**The diameter of a circle is a line segment that passes through the center of a circle connecting one side of the circle to the other. Read more...iWorksheets :3Study Guides :1**Formulas**The formulas contain places for inputting numbers. Evaluating a formula requires inputting the correct data and performing the operations. Read more...iWorksheets :3Study Guides :1**Area and Circumference of Circles**FreeThe circumference of a circle is the distance around the outside. The area of a circle is the space contained within the circumference. It is measured in square units. Read more...iWorksheets :4Study Guides :1**Numerical Proportions**Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1**Geometric Proportions**Geometric proportions compare two similar polygons. Similar polygons have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :4Study Guides :1**Measurement, Perimeter, and Circumference**There are two systems used to measure objects, the U.S. Customary system and the metric system. The U.S. Customary system measures length in inches, feet, yards and miles. The metric system is a base ten system and measures length in kilometers, meters, and millimeters. Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To get the perimeter of any figure, simply add up the measures of the sides of the figure. Read more...iWorksheets :3Study Guides :1**Perimeter and area**What Is Perimeter and Area? Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To find the perimeter of any figure, simply add up the measures of the sides of the figure. Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1**Ratios, proportions and percents**Numerical proportions compare two numbers. A proportion is usually in the form of a:b or a/b. There are 4 parts to a proportion and it can be solved when 3 of the 4 parts are known. Proportions can be solved using the Cross Product Property, which states that the cross products of a proportion are equal. Read more...iWorksheets :4Study Guides :1**Similarity and scale**Similarity refers to similar figures and the ability to compare them using proportions. Similar figures have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :7Study Guides :1#### 12.2. Number and Operations: In grade 4, students used equivalent fractions to determine the decimal representations of fractions that they could represent with terminating decimals. Students now use division to express any fraction as a decimal, including fractions that they must represent with infinite decimals. They find this method useful when working with proportions, especially those involving percents. Students connect their work with dividing fractions to solving equations of the form ax = b, where a and b are fractions. Students continue to develop their understanding of multiplication and division and the structure of numbers by determining if a counting number greater than 1 is a prime, and if it is not, by factoring it into a product of primes.

**Number Patterns**A number pattern is a group of numbers that are related to one another in some sort of pattern. Finding a pattern is a simpler way to solve a problem. Read more...iWorksheets :3Study Guides :1**Ratio**A ratio is a comparison of two numbers. The two numbers must have
the same unit in order to be compared. Read more...iWorksheets :3Study Guides :1**Percentage**The term percent refers to a fraction in which the denominator is 100.
It is a way to compare a number with 100. Read more...iWorksheets :6Study Guides :1**Simple Proportions**A proportion is a statement that two ratios are equal. A ratio is a pair of numbers used to show a comparison. To solve a proportion, calculate equivalent fractions in order to be sure the two fractions (ratios) are equal. Read more...iWorksheets :3Study Guides :1**Multiple Representation of Rational Numbers**What are multiple representations of rational numbers? A rational number represents a value or a part of a value. Rational numbers can be written as integers, fractions, decimals, and percents.The different representations for any given rational number are all equivalent. Read more...iWorksheets :3Study Guides :1**Rational and Irrational Numbers**A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. An irrational number is a number that cannot be made into a fraction. Decimals that do not repeat or end are irrational numbers. Pi is an irrational number. Read more...iWorksheets :3Study Guides :1**Exponents, Factors and Fractions**FreeIn a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :8Study Guides :1**Numerical Proportions**Numerical proportions compare two numbers. The numbers can have the same units such as a ratio or the numbers can have different units such as rates. A proportion is usually in the form of a:b or a/b. Ratios are used to compare objects, wins and losses, sides of a figure to its area and many more. Rates are used to compare miles per hour, words per minute, and many others. A unit rate is when the denominator of a proportion is one. Read more...iWorksheets :4Study Guides :1**Introduction to Percent**What Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets :4Study Guides :1**Ratios, proportions and percents**Numerical proportions compare two numbers. A proportion is usually in the form of a:b or a/b. There are 4 parts to a proportion and it can be solved when 3 of the 4 parts are known. Proportions can be solved using the Cross Product Property, which states that the cross products of a proportion are equal. Read more...iWorksheets :4Study Guides :1**Similarity and scale**Similarity refers to similar figures and the ability to compare them using proportions. Similar figures have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :7Study Guides :1**Numbers and percents**Numbers and percents refer to the relationship between fractions, decimals, and percents. A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Fractions and decimals can easily be changed into percent. There are three cases of percent. Read more...iWorksheets :3Study Guides :1#### 12.3. Data Analysis: Students use proportions to make estimates relating to a population on the basis of a sample. They apply percentages to make and interpret histograms and circle graphs.

**Graphs**FreeA graph is a diagram that shows information in an organized way. Read more...iWorksheets :15Study Guides :1**Analyzing, Graphing and Displaying Data**There are many types of graphs such as, bar graphs, histograms and line graphs. A bar graph compares data in categories and uses bars, either vertical or horizontal. A histogram is similar to a bar graph, but with histograms the bars touch each other where with bar graphs the bars do not touch each other. A line graph is useful for graphing how data changes over time. With a line graph, data is plotted as points and lines are drawn to connect the points to show how the data changes. Read more...iWorksheets :6Study Guides :1**Plane Figures: Lines and Angles**Plane figures in regards to lines and angles refer to the coordinate plane and the various lines and angles within the coordinate plane. Lines in a coordinate plane can be parallel or perpendicular. Angles in a coordinate plane can be acute, obtuse, right or straight. Adjacent angles are two angles that have a common vertex and a common side but do not overlap. Read more...iWorksheets :3Study Guides :1**Plane Figures: Closed Figure Relationships**Plane figures in regards to closed figure relationships refer to the coordinate plane and congruent figures, circles, circle graphs, transformations and symmetry. Congruent figures have the same size and shape. Transformations are made up of translations, rotations and reflections. A translation of a figure keeps the size and shape of a figure, but moves it to a different location. A rotation turns a figure about a point on the figure. A reflection of a figure produces a mirror image of the figure when it is reflected in a given line. Read more...iWorksheets :3Study Guides :1**Using graphs to analyze data**There are different types of graphs and ways that data can be analyzed using the graphs. Graphs are based on the coordinate plane. Data are the points on the plane. If collecting data about the ages of people living on one street, the data is all the ages. The data can then be organized into groups, and evaluated. Mean, mode and median are different ways to evaluate data. Read more...iWorksheets :7Study Guides :1#### 12.4. Probability: Students understand that when all outcomes of an experiment are equally likely, the theoretical probability of an event is the fraction of outcomes in which the event occurs. Students use theoretical probability and proportions to make approximate predictions.

**Introduction to Probability**Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read more...iWorksheets :4Study Guides :1**Theoretical probability and counting**Probability word problems worksheets. Theoretical probability is the probability that a certain outcome will occur based on all the possible outcomes. Sometimes, the number of ways that an event can happen depends on the order. A permutation is an arrangement of objects in which order matters. A combination is a set of objects in which order does not matter. Probability is also based on whether events are dependent or independent of each other. Read more...iWorksheets :3Study Guides :1 Standards

### NewPath Learning resources are fully aligned to US Education Standards. Select a standard below to view correlations to your selected resource: