Oklahoma Academic Standards for Eighth Grade Math

Applications of percent
Percent increase or decrease can be found by using the formula: percent of change = actual change/original amount. The change is either an increase, if the amounts went up or a decrease if the amounts went down. If a number changes from 33 to 89, the percent of increase would be: Percent of increase = (89 -33) ÷ 33 = 56 ÷ 33 ≈ 1.6969 ≈ 170% Read more...iWorksheets: 4Study Guides: 1
Mathematical processes
Mathematical processes refer to the skills and strategies needed in order to solve mathematical problems. If one strategy does not help to find the solution to a problem, using another strategy may help to solve it. Problem solving skills refer to the math techniques that must be used to solve a problem. If a problem were to determine the perimeter of a square, a needed skill would be the knowledge of what perimeter means and the ability to add the numbers. Read more...iWorksheets: 3Study Guides: 1
Numbers and percents
Numbers and percents refer to the relationship between fractions, decimals, and percents. A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Fractions and decimals can easily be changed into percent. There are three cases of percent. Read more...iWorksheets: 3Study Guides: 1
Using graphs to analyze data
There are different types of graphs and ways that data can be analyzed using the graphs. Graphs are based on the coordinate plane. Data are the points on the plane. If collecting data about the ages of people living on one street, the data is all the ages. The data can then be organized into groups, and evaluated. Mean, mode and median are different ways to evaluate data. Read more...iWorksheets: 3Study Guides: 1

OK.PA. Pre-Algebra (PA)

PA.N. Number & Operations (N)

PA.N.1. Read, write, compare, classify, and represent real numbers and use them to solve problems in various contexts.
PA.N.1.1. Develop and apply the properties of integer exponents, including a^0 = 1 (with a ≠ 0), to generate equivalent numerical and algebraic expressions.
Exponents, Factors and Fractions
In a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :4Study Guides :1
Polynomials and Exponents
A polynomial is an expression which is in the form of axn, where a is any real number and n is a whole number. If a polynomial has only one term, it is called a monomial. If it has two terms, it is a binomial and if it has three terms, it is a trinomial. The standard form of a polynomial is when the powers of the variables are decreasing from left to right. Read more...iWorksheets :4Study Guides :1
PA.N.1.2. Express and compare approximations of very large and very small numbers using scientific notation.
Exponents, Factors and Fractions
In a mathematical expression where the same number is multiplied many times, it is often useful to write the number as a base with an exponent. Exponents are also used to evaluate numbers. Any number to a zero exponent is 1 and any number to a negative exponent is a number less than 1. Exponents are used in scientific notation to make very large or very small numbers easier to write. Read more...iWorksheets :4Study Guides :1
Polynomials and Exponents
A polynomial is an expression which is in the form of axn, where a is any real number and n is a whole number. If a polynomial has only one term, it is called a monomial. If it has two terms, it is a binomial and if it has three terms, it is a trinomial. The standard form of a polynomial is when the powers of the variables are decreasing from left to right. Read more...iWorksheets :4Study Guides :1
PA.N.1.4. Classify real numbers as rational or irrational. Explain why the rational number system is closed under addition and multiplication and why the irrational system is not. Explain why the sum of a rational number and an irrational number is irrational; and the product of a non-zero rational number and an irrational number is irrational.
Rational and Irrational Numbers
A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. An irrational number is a number that cannot be made into a fraction. Decimals that do not repeat or end are irrational numbers. Pi is an irrational number. Read more...iWorksheets :3Study Guides :1
PA.N.1.5. Compare real numbers; locate real numbers on a number line. Identify the square root of a perfect square to 400 or, if it is not a perfect square root, locate it as an irrational number between two consecutive positive integers.
Rational and Irrational Numbers
A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. An irrational number is a number that cannot be made into a fraction. Decimals that do not repeat or end are irrational numbers. Pi is an irrational number. Read more...iWorksheets :3Study Guides :1
The Pythagorean Theorem
Pythagorean Theorem is a fundamental relation in Euclidean geometry. It states the sum of the squares of the legs of a right triangle equals the square of the length of the hypotenuse. Determine the distance between two points using the Pythagorean Theorem. Read more...iWorksheets :4Study Guides :1
Real numbers
Real numbers are the set of rational and irrational numbers. The set of rational numbers includes integers, whole numbers, and natural numbers. A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. An irrational number is a number that cannot be made into a fraction. Decimals that do not repeat or end are irrational numbers. Read more...iWorksheets :4Study Guides :1

PA.A. Algebraic Reasoning & Algebra (A)

PA.A.1. Understand the concept of function in real-world and mathematical situations, and distinguish between linear and nonlinear functions.
PA.A.1.1. Recognize that a function is a relationship between an independent variable and a dependent variable in which the value of the independent variable determines the value of the dependent variable.
Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1
Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :3Study Guides :1
PA.A.1.2. Use linear functions to represent and explain real-world and mathematical situations.
Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1
Linear equations
Linear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :3Study Guides :1
Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :3Study Guides :1
PA.A.1.3. Identify a function as linear if it can be expressed in the form y = mx + b or if its graph is a straight line.
Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1
PA.A.2. Recognize linear functions in real-world and mathematical situations; represent linear functions and other functions with tables, verbal descriptions, symbols, and graphs; solve problems involving linear functions and interpret results in the original context.
PA.A.2.2. Identify, describe, and analyze linear relationships between two variables.
Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1
Linear equations
Linear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :3Study Guides :1
Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :3Study Guides :1
PA.A.2.3. Identify graphical properties of linear functions including slope and intercepts. Know that the slope equals the rate of change, and that the y-intercept is zero when the function represents a proportional relationship.
Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1
Linear equations
Linear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :3Study Guides :1
PA.A.4. Represent real-world and mathematical problems using equations and inequalities involving linear expressions. Solve and graph equations and inequalities symbolically and graphically. Interpret solutions in the original context.
PA.A.4.1. Illustrate, write, and solve mathematical and real-world problems using linear equations with one variable with one solution, infinitely many solutions, or no solutions. Interpret solutions in the original context.
Introduction to Algebra
Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
Equations and Inequalities
Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :5Study Guides :1
Using Integers
Integers are negative numbers, zero and positive numbers. To compare integers, a number line can be used. On a number line, negative integers are on the left side of zero with the larger a negative number, the farther to the left it is. Positive integers are on the right side of zero on the number line. If a number is to the left of another number it is said to be less than that number. In the coordinate plane, the x-axis is a horizontal line with negative numbers, zero and positive numbers. Read more...iWorksheets :4Study Guides :1
Decimal Operations
Decimal operations refer to the mathematical operations that can be performed with decimals: addition, subtraction, multiplication and division. The process for adding, subtracting, multiplying and dividing decimals must be followed in order to achieve the correct answer. Read more...iWorksheets :3Study Guides :1
Fraction Operations
Fraction operations are the processes of adding, subtracting, multiplying and dividing fractions and mixed numbers. A mixed number is a fraction with a whole number. Adding fractions is common in many everyday events, such as making a recipe and measuring wood. In order to add and subtract fractions, the fractions must have the same denominator. Read more...iWorksheets :3Study Guides :1
Introduction to Percent
What Is Percent? A percent is a term that describes a decimal in terms of one hundred. Percent means per hundred. Percents, fractions and decimals all can equal each other, as in the case of 10%, 0.1 and 1/10. Percents can be greater than 100% or smaller than 1%. A markup from the cost of making an item to the actual sales price is usually greater than 100%. A salesperson's commission might be 1/2% depending on the item sold. Read more...iWorksheets :4Study Guides :1
Algebraic Equations
What are algebraic equations? Algebraic equations are mathematical quations that contain a letter or variable, which represents a number. When algebraic equations are written in words, the words must be changed into the appropriate numbers and variable in order to solve. Read more...iWorksheets :4Study Guides :1
Equations and inequalities
An equation is mathematical statement that shows that two expressions are equal to each other. The expressions used in an equation can contain variables or numbers. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Inequalities are also solved by using inverse operations. Read more...iWorksheets :3Study Guides :1
Integer operations
Integer operations are the mathematical operations that involve integers. Integers are negative numbers, zero and positive numbers. Adding and subtracting integers are useful in everyday life because there are many situations that involved negative numbers such as calculating sea level or temperatures. Equations with integers are solved using inverse operations. Addition and subtraction are inverse operations, and multiplication and division are inverse operations of each other. Read more...iWorksheets :4Study Guides :1
Rational numbers and operations
A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. A square root of a number is a number that when multiplied by itself will result in the original number. The square root of 4 is 2 because 2 · 2 = 4. Read more...iWorksheets :3Study Guides :1
Solving linear equations
When graphed, a linear equation is a straight line. Although the standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept, linear equations often have both of the variables on the same side of the equal sign. Linear equations can be solved for one variable when the other variable is given. Read more...iWorksheets :5Study Guides :1
Solving equations and inequalities
Algebraic equations are mathematical equations that contain a letter or variable which represents a number. To solve an algebraic equation, inverse operations are used. Algebraic inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to, ≥; less than, <; and less than or equal to, ≤. When multiplying or dividing by a negative number occurs, the inequality sign is reversed from the original inequality sign in order for the inequality to be correct. Read more...iWorksheets :3Study Guides :1
PA.A.4.2. Represent, write, solve, and graph problems leading to linear inequalities with one variable in the form px + q > r and px + q < r, where p, q, and r are rational numbers.
Equations and Inequalities
Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :5Study Guides :1
Algebraic Inequalities
FreeAlgebraic inequalities are mathematical equations that compare two quantities using these criteria: greater than, less than, less than or equal to, greater than or equal to. The only rule of inequalities that must be remembered is that when a variable is multiplied or divided by a negative number the sign is reversed. Read more...iWorksheets :3Study Guides :1
Equations and inequalities
An equation is mathematical statement that shows that two expressions are equal to each other. The expressions used in an equation can contain variables or numbers. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Inequalities are also solved by using inverse operations. Read more...iWorksheets :3Study Guides :1
Integer operations
Integer operations are the mathematical operations that involve integers. Integers are negative numbers, zero and positive numbers. Adding and subtracting integers are useful in everyday life because there are many situations that involved negative numbers such as calculating sea level or temperatures. Equations with integers are solved using inverse operations. Addition and subtraction are inverse operations, and multiplication and division are inverse operations of each other. Read more...iWorksheets :4Study Guides :1
Rational numbers and operations
A rational number is a number that can be made into a fraction. Decimals that repeat or terminate are rational because they can be changed into fractions. A square root of a number is a number that when multiplied by itself will result in the original number. The square root of 4 is 2 because 2 · 2 = 4. Read more...iWorksheets :3Study Guides :1
PA.A.4.3. Represent real-world situations using equations and inequalities involving one variable.
Introduction to Algebra
Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1

PA.GM. Geometry & Measurement (GM)

PA.GM.1. Solve problems involving right triangles using the Pythagorean Theorem.
PA.GM.1.1. Informally justify the Pythagorean Theorem using measurements, diagrams, or dynamic software and use the Pythagorean Theorem to solve problems in two and three dimensions involving right triangles.
The Pythagorean Theorem
Pythagorean Theorem is a fundamental relation in Euclidean geometry. It states the sum of the squares of the legs of a right triangle equals the square of the length of the hypotenuse. Determine the distance between two points using the Pythagorean Theorem. Read more...iWorksheets :4Study Guides :1
PA.GM.1.2. Use the Pythagorean Theorem to find the distance between any two points in a coordinate plane.
The Pythagorean Theorem
Pythagorean Theorem is a fundamental relation in Euclidean geometry. It states the sum of the squares of the legs of a right triangle equals the square of the length of the hypotenuse. Determine the distance between two points using the Pythagorean Theorem. Read more...iWorksheets :4Study Guides :1
PA.GM.2. Calculate surface area and volume of three-dimensional figures.
PA.GM.2.1. Calculate the surface area of a rectangular prism using decomposition or nets. Use appropriate measurements such as cm^2.
Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
Three dimensional geometry/Measurement
Three-dimensional geometry/measurement refers to three-dimensional (3D) shapes and the measurement of their shapes concerning volume and surface area. The figures of prisms, cylinders, pyramids, cones and spheres are all 3D figures. Volume measures the amount a solid figure can hold. Volume is measured in terms of units³ and can be measured in inches, feet, meters, centimeters, and millimeters. Read more...iWorksheets :3Study Guides :1
PA.GM.2.2. Calculate the surface area of a cylinder, in terms of π and using approximations for π, using decomposition or nets. Use appropriate measurements such as cm^2.
Measurement, Perimeter, and Circumference
There are two systems used to measure objects, the U.S. Customary system and the metric system. The U.S. Customary system measures length in inches, feet, yards and miles. The metric system is a base ten system and measures length in kilometers, meters, and millimeters. Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To get the perimeter of any figure, simply add up the measures of the sides of the figure. Read more...iWorksheets :3Study Guides :1
Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
Perimeter and area
What Is Perimeter and Area? Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To find the perimeter of any figure, simply add up the measures of the sides of the figure. Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
Three dimensional geometry/Measurement
Three-dimensional geometry/measurement refers to three-dimensional (3D) shapes and the measurement of their shapes concerning volume and surface area. The figures of prisms, cylinders, pyramids, cones and spheres are all 3D figures. Volume measures the amount a solid figure can hold. Volume is measured in terms of units³ and can be measured in inches, feet, meters, centimeters, and millimeters. Read more...iWorksheets :3Study Guides :1
PA.GM.2.3. Develop and use the formulas V = lwh and V = bh to determine the volume of rectangular prisms. Justify why base area (B) and height (h) are multiplied to find the volume of a rectangular prism. Use appropriate measurements such as cm^3.
Finding Volume
Volume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1
Three dimensional geometry/Measurement
Three-dimensional geometry/measurement refers to three-dimensional (3D) shapes and the measurement of their shapes concerning volume and surface area. The figures of prisms, cylinders, pyramids, cones and spheres are all 3D figures. Volume measures the amount a solid figure can hold. Volume is measured in terms of units³ and can be measured in inches, feet, meters, centimeters, and millimeters. Read more...iWorksheets :3Study Guides :1
PA.GM.2.4. Develop and use the formulas V = πr^2h and V = Bh to determine the volume of right cylinders, in terms of π and using approximations for π. Justify why base area (B) and height (h) are multiplied to find the volume of a right cylinder. Use appropriate measurements such as cm^3.
Measurement, Perimeter, and Circumference
There are two systems used to measure objects, the U.S. Customary system and the metric system. The U.S. Customary system measures length in inches, feet, yards and miles. The metric system is a base ten system and measures length in kilometers, meters, and millimeters. Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To get the perimeter of any figure, simply add up the measures of the sides of the figure. Read more...iWorksheets :3Study Guides :1
Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
Finding Volume
Volume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1
Perimeter and area
What Is Perimeter and Area? Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To find the perimeter of any figure, simply add up the measures of the sides of the figure. Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
Three dimensional geometry/Measurement
Three-dimensional geometry/measurement refers to three-dimensional (3D) shapes and the measurement of their shapes concerning volume and surface area. The figures of prisms, cylinders, pyramids, cones and spheres are all 3D figures. Volume measures the amount a solid figure can hold. Volume is measured in terms of units³ and can be measured in inches, feet, meters, centimeters, and millimeters. Read more...iWorksheets :3Study Guides :1

PA.D. Data & Probability (D)

PA.D.1. Display and interpret data in a variety of ways, including using scatterplots and approximate lines of best fit. Use line of best fit and average rate of change to make predictions and draw conclusions about data.
PA.D.1.1. Describe the impact that inserting or deleting a data point has on the mean and the median of a data set. Know how to create data displays using a spreadsheet and use a calculator to examine this impact.
Organizing Data
The data can be organized into groups, and evaluated. Mean, mode, median and range are different ways to evaluate data. The mean is the average of the data. The mode refers to the number that occurs the most often in the data. The median is the middle number when the data is arranged in order from lowest to highest. The range is the difference in numbers when the lowest number is subtracted from the highest number. Data can be organized into a table, such as a frequency table. Read more...iWorksheets :3Study Guides :1
Analyzing, Graphing and Displaying Data
There are many types of graphs such as, bar graphs, histograms and line graphs. A bar graph compares data in categories and uses bars, either vertical or horizontal. A histogram is similar to a bar graph, but with histograms the bars touch each other where with bar graphs the bars do not touch each other. A line graph is useful for graphing how data changes over time. With a line graph, data is plotted as points and lines are drawn to connect the points to show how the data changes. Read more...iWorksheets :3Study Guides :1
Using graphs to analyze data
There are different types of graphs and ways that data can be analyzed using the graphs. Graphs are based on the coordinate plane. Data are the points on the plane. If collecting data about the ages of people living on one street, the data is all the ages. The data can then be organized into groups, and evaluated. Mean, mode and median are different ways to evaluate data. Read more...iWorksheets :3Study Guides :1
Collecting and describing data
Collecting and describing data refers to the different ways to gather data and the different ways to arrange data whether it is in a table, graph, or pie chart. Data can be collected by either taking a sample of a population or by conducting a survey. Describing data looks at data after it has been organized and makes conclusions about the data. Read more...iWorksheets :3Study Guides :1
PA.D.1.3. Collect, display and interpret data using scatterplots. Use the shape of the scatterplot to informally estimate a line of best fit, make statements about average rate of change, and make predictions about values not in the original data set. Use appropriate titles, labels and units.
Analyzing, Graphing and Displaying Data
There are many types of graphs such as, bar graphs, histograms and line graphs. A bar graph compares data in categories and uses bars, either vertical or horizontal. A histogram is similar to a bar graph, but with histograms the bars touch each other where with bar graphs the bars do not touch each other. A line graph is useful for graphing how data changes over time. With a line graph, data is plotted as points and lines are drawn to connect the points to show how the data changes. Read more...iWorksheets :3Study Guides :1
Using graphs to analyze data
There are different types of graphs and ways that data can be analyzed using the graphs. Graphs are based on the coordinate plane. Data are the points on the plane. If collecting data about the ages of people living on one street, the data is all the ages. The data can then be organized into groups, and evaluated. Mean, mode and median are different ways to evaluate data. Read more...iWorksheets :3Study Guides :1
Displaying data
Displaying data refers to the many ways that data can be displayed whether it is on a bar graph, line graph, circle graph, pictograph, line plot, scatter plot or another way. Certain data is better displayed with different graphs as opposed to other graphs. E.g. if data representing the cost of a movie over the past 5 years were to be displayed, a line graph would be best. A circle graph would not be appropriate to use because a circle graph represents data that can add up to one or 100%. Read more...iWorksheets :4Study Guides :1
Experimental Probability
FreeExperimental probability is the probability that a certain outcome will occur based on an experiment being performed multiple times. Probability word problems worksheets. Read more...iWorksheets :3Study Guides :1
Linear relationships
Linear relationships refer to two quantities that are related with a linear equation. Since a linear equation is a line, a linear relationship refers to two quantities on a line and their relationship to one another. This relationship can be direct or inverse. If y varies directly as x, it means if y is doubled, then x is doubled. The formula for a direct variation is y = kx, where k is the constant of variation. Read more...iWorksheets :3Study Guides :1
PA.D.2. Calculate experimental probabilities and reason about probabilities to solve real-world and mathematical problems.
PA.D.2.1. Calculate experimental probabilities and represent them as percents, fractions and decimals between 0 and 1 inclusive. Use experimental probabilities to make predictions when actual probabilities are unknown.
Introduction to Probability
Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read more...iWorksheets :4Study Guides :1
Experimental Probability
FreeExperimental probability is the probability that a certain outcome will occur based on an experiment being performed multiple times. Probability word problems worksheets. Read more...iWorksheets :3Study Guides :1
PA.D.2.3. Compare and contrast dependent and independent events.
Using Probability
Probability is the possibility that a certain event will occur. Probability is the chance of an event occurring divided by the total number of possible outcomes. Probability is based on whether events are dependent or independent of each other. An independent event refers to the outcome of one event not affecting the outcome of another event. A dependent event is when the outcome of one event does affect the outcome of the other event. Probability word problems. Read more...iWorksheets :3Study Guides :1
Theoretical probability and counting
Probability word problems worksheets. Theoretical probability is the probability that a certain outcome will occur based on all the possible outcomes. Sometimes, the number of ways that an event can happen depends on the order. A permutation is an arrangement of objects in which order matters. A combination is a set of objects in which order does not matter. Probability is also based on whether events are dependent or independent of each other. Read more...iWorksheets :3Study Guides :1

OK.A1. Algebra 1 (A1)

A1.A. Algebraic Reasoning & Algebra (A)

A1.A.2. Represent and solve real-world and mathematical problems using linear inequalities, compound inequalities and systems of linear inequalities; interpret solutions in the original context.
A1.A.2.1. Represent relationships in various contexts with linear inequalities; solve the resulting inequalities, graph on a coordinate plane, and interpret the solutions.
Linear relationships
Linear relationships refer to two quantities that are related with a linear equation. Since a linear equation is a line, a linear relationship refers to two quantities on a line and their relationship to one another. This relationship can be direct or inverse. If y varies directly as x, it means if y is doubled, then x is doubled. The formula for a direct variation is y = kx, where k is the constant of variation. Read more...iWorksheets :3Study Guides :1
A1.A.2.2. Represent relationships in various contexts with compound and absolute value inequalities and solve the resulting inequalities by graphing and interpreting the solutions on a number line.
Equations and Inequalities
Algebraic equations are mathematical equations that contain a letter or variable, which represents a number. To solve an algebraic equation, inverse operations are used. The inverse operation of addition is subtraction and the inverse operation of subtraction is addition. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Read more...iWorksheets :5Study Guides :1
Algebraic Inequalities
FreeAlgebraic inequalities are mathematical equations that compare two quantities using these criteria: greater than, less than, less than or equal to, greater than or equal to. The only rule of inequalities that must be remembered is that when a variable is multiplied or divided by a negative number the sign is reversed. Read more...iWorksheets :3Study Guides :1
Equations and inequalities
An equation is mathematical statement that shows that two expressions are equal to each other. The expressions used in an equation can contain variables or numbers. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Inequalities are also solved by using inverse operations. Read more...iWorksheets :3Study Guides :1
A1.A.3. Generate equivalent algebraic expressions and use algebraic properties to evaluate expressions and arithmetic and geometric sequences.
A1.A.3.1. Solve equations involving several variables for one variable in terms of the others.
Solving equations and inequalities
Algebraic equations are mathematical equations that contain a letter or variable which represents a number. To solve an algebraic equation, inverse operations are used. Algebraic inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to, ≥; less than, <; and less than or equal to, ≤. When multiplying or dividing by a negative number occurs, the inequality sign is reversed from the original inequality sign in order for the inequality to be correct. Read more...iWorksheets :3Study Guides :1
A1.A.3.2. Simplify polynomial expressions by adding, subtracting, or multiplying.
Introduction to Algebra
Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
Equations and inequalities
An equation is mathematical statement that shows that two expressions are equal to each other. The expressions used in an equation can contain variables or numbers. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Inequalities are also solved by using inverse operations. Read more...iWorksheets :3Study Guides :1
Polynomials and Exponents
A polynomial is an expression which is in the form of axn, where a is any real number and n is a whole number. If a polynomial has only one term, it is called a monomial. If it has two terms, it is a binomial and if it has three terms, it is a trinomial. The standard form of a polynomial is when the powers of the variables are decreasing from left to right. Read more...iWorksheets :4Study Guides :1
A1.A.3.5. Recognize that arithmetic sequences are linear using equations, tables, graphs, and verbal descriptions. Use the pattern, find the next term.
Sequences
A sequence is an ordered list of numbers. Sequences are the result of a pattern or rule. A pattern or rule can be every other number or some formula such as y = 2x + 3. When a pattern or rule is given, a sequence can be found. When a sequence is given, the pattern or rule can be found. Read more...iWorksheets :4Study Guides :1
A1.A.3.6. Recognize that geometric sequences are exponential using equations, tables, graphs and verbal descriptions. Given the formula f(x) = a(r)^x, find the next term and define the meaning of a and r within the context of the problem.
Sequences
A sequence is an ordered list of numbers. Sequences are the result of a pattern or rule. A pattern or rule can be every other number or some formula such as y = 2x + 3. When a pattern or rule is given, a sequence can be found. When a sequence is given, the pattern or rule can be found. Read more...iWorksheets :4Study Guides :1
A1.A.4. Analyze mathematical change involving linear equations in real-world and mathematical problems.
A1.A.4.1. Calculate and interpret slope and the x- and y-intercepts of a line using a graph, an equation, two points, or a set of data points to solve real-world and mathematical problems.
Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1
Linear equations
Linear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :3Study Guides :1
A1.A.4.3. Express linear equations in slope-intercept, point-slope, and standard forms and convert between these forms. Given sufficient information (slope and y-intercept, slope and one-point on the line, two points on the line, x- and y-intercept, or a set of data points), write the equation of a line.
Linear equations
Linear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :3Study Guides :1
A1.A.4.4. Translate between a graph and a situation described qualitatively.
Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1
Linear equations
Linear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :3Study Guides :1
Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :3Study Guides :1

A1.F. Functions (F)

A1.F.1. Understand functions as descriptions of covariation (how related quantities vary together) in real-world and mathematical problems.
A1.F.1.1. Distinguish between relations and functions.
Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1
Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :3Study Guides :1
A1.F.1.3. Write linear functions, using function notation, to model real-world and mathematical situations.
Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1
A1.F.3. Represent functions in multiple ways and use the representation to interpret real-world and mathematical problems.
A1.F.3.2. Use function notation; evaluate a function, including nonlinear, at a given point in its domain algebraically and graphically. Interpret the results in terms of real-world and mathematical problems.
Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1
A1.F.3.3. Add, subtract, and multiply functions using function notation.
Introduction to Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :5Study Guides :1

A1.D. Data & Probability (D)

A1.D.1. Display, describe, and compare data. For linear relationships, make predictions and assess the reliability of those predictions.
A1.D.1.2. Collect data and use scatterplots to analyze patterns and describe linear relationships between two variables. Using graphing technology, determine regression lines and correlation coefficients; use regression lines to make predictions and correlation coefficients to assess the reliability of those predictions.
Using graphs to analyze data
There are different types of graphs and ways that data can be analyzed using the graphs. Graphs are based on the coordinate plane. Data are the points on the plane. If collecting data about the ages of people living on one street, the data is all the ages. The data can then be organized into groups, and evaluated. Mean, mode and median are different ways to evaluate data. Read more...iWorksheets :3Study Guides :1
Collecting and describing data
Collecting and describing data refers to the different ways to gather data and the different ways to arrange data whether it is in a table, graph, or pie chart. Data can be collected by either taking a sample of a population or by conducting a survey. Describing data looks at data after it has been organized and makes conclusions about the data. Read more...iWorksheets :3Study Guides :1
Experimental Probability
FreeExperimental probability is the probability that a certain outcome will occur based on an experiment being performed multiple times. Probability word problems worksheets. Read more...iWorksheets :3Study Guides :1
Linear relationships
Linear relationships refer to two quantities that are related with a linear equation. Since a linear equation is a line, a linear relationship refers to two quantities on a line and their relationship to one another. This relationship can be direct or inverse. If y varies directly as x, it means if y is doubled, then x is doubled. The formula for a direct variation is y = kx, where k is the constant of variation. Read more...iWorksheets :3Study Guides :1
A1.D.2. Calculate probabilities and apply probability concepts.
A1.D.2.1. Select and apply counting procedures, such as the multiplication and addition principles and tree diagrams, to determine the size of a sample space (the number of possible outcomes) and to calculate probabilities.
Using Probability
Probability is the possibility that a certain event will occur. Probability is the chance of an event occurring divided by the total number of possible outcomes. Probability is based on whether events are dependent or independent of each other. An independent event refers to the outcome of one event not affecting the outcome of another event. A dependent event is when the outcome of one event does affect the outcome of the other event. Probability word problems. Read more...iWorksheets :3Study Guides :1
Theoretical probability and counting
Probability word problems worksheets. Theoretical probability is the probability that a certain outcome will occur based on all the possible outcomes. Sometimes, the number of ways that an event can happen depends on the order. A permutation is an arrangement of objects in which order matters. A combination is a set of objects in which order does not matter. Probability is also based on whether events are dependent or independent of each other. Read more...iWorksheets :3Study Guides :1
A1.D.2.2. Describe the concepts of intersections, unions, and complements using Venn diagrams to evaluate probabilities. Understand the relationships between these concepts and the words AND, OR, and NOT.
Nonlinear Functions and Set Theory
A function can be in the form of y = mx + b. This is an equation of a line, so it is said to be a linear function. Nonlinear functions are functions that are not straight lines. Some examples of nonlinear functions are exponential functions and parabolic functions. An exponential function, y = aˆx, is a curved line that gets closer to but does not touch the x-axis. A parabolic function, y = ax² + bx +c, is a U-shaped line that can either be facing up or facing down. Read more...iWorksheets :4Study Guides :1
Using graphs to analyze data
There are different types of graphs and ways that data can be analyzed using the graphs. Graphs are based on the coordinate plane. Data are the points on the plane. If collecting data about the ages of people living on one street, the data is all the ages. The data can then be organized into groups, and evaluated. Mean, mode and median are different ways to evaluate data. Read more...iWorksheets :3Study Guides :1
A1.D.2.3. Calculate experimental probabilities by performing simulations or experiments involving a probability model and using relative frequencies of outcomes.
Introduction to Probability
Probability is the possibility that a certain event will occur. An event that is certain to occur has a probability of 1. An event that cannot occur has a probability of 0. Therefore, the probability of an event occurring is always between 0 and 1. Probability word problems worksheets. Read more...iWorksheets :4Study Guides :1
Experimental Probability
FreeExperimental probability is the probability that a certain outcome will occur based on an experiment being performed multiple times. Probability word problems worksheets. Read more...iWorksheets :3Study Guides :1

OK.G. Geometry (G)

G.RL. Geometry: Reasoning & Logic (G.RL)

G.RL.1. Use appropriate tools and logic to evaluate mathematical arguments.
G.RL.1.1. Understand the use of undefined terms, definitions, postulates, and theorems in logical arguments/proofs.
Geometric Proportions
Geometric proportions compare two similar polygons. Similar polygons have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :4Study Guides :1
Plane Figures: Lines and Angles
Plane figures in regards to lines and angles refer to the coordinate plane and the various lines and angles within the coordinate plane. Lines in a coordinate plane can be parallel or perpendicular. Angles in a coordinate plane can be acute, obtuse, right or straight. Read more...iWorksheets :3Study Guides :1
Plane Figures: Closed Figure Relationships
Plane figures in regards to closed figure relationships refer to the coordinate plane and congruent figures, circles, circle graphs, transformations and symmetry. Congruent figures have the same size and shape. Transformations are made up of translations, rotations and reflections. A translation of a figure keeps the size and shape of a figure, but moves it to a different location. A rotation turns a figure about a point on the figure. A reflection of a figure produces a mirror image of the figure when it is reflected in a given line. Read more...iWorksheets :3Study Guides :1
Measurement, Perimeter, and Circumference
There are two systems used to measure objects, the U.S. Customary system and the metric system. The U.S. Customary system measures length in inches, feet, yards and miles. The metric system is a base ten system and measures length in kilometers, meters, and millimeters. Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To get the perimeter of any figure, simply add up the measures of the sides of the figure. Read more...iWorksheets :3Study Guides :1
Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
The Pythagorean Theorem
Pythagorean Theorem is a fundamental relation in Euclidean geometry. It states the sum of the squares of the legs of a right triangle equals the square of the length of the hypotenuse. Determine the distance between two points using the Pythagorean Theorem. Read more...iWorksheets :4Study Guides :1
Finding Volume
Volume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1
Plane figures
Plane figures refer to points, lines, angles, and planes in the coordinate plane. Lines can be parallel or perpendicular. Angles can be categorized as acute, obtuse or right. Angles can also be complementary or supplementary depending on how many degrees they add up to. Plane figures can also refer to shapes in the coordinate plane. Triangles, quadrilaterals and other polygons can be shown in the coordinate plane. Read more...iWorksheets :4Study Guides :1
Patterns in geometry
Patterns in geometry refer to shapes and their measures. Shapes can be congruent to one another. Shapes can also be manipulated to form similar shapes. The types of transformations are reflection, rotation, dilation and translation. With a reflection, a figure is reflected, or flipped, in a line so that the new figure is a mirror image on the other side of the line. A rotation rotates, or turns, a shape to make a new figure. A dilation shrinks or enlarges a figure. A translation shifts a figure to a new position. Read more...iWorksheets :3Study Guides :1
Perimeter and area
What Is Perimeter and Area? Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To find the perimeter of any figure, simply add up the measures of the sides of the figure. Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
Three dimensional geometry/Measurement
Three-dimensional geometry/measurement refers to three-dimensional (3D) shapes and the measurement of their shapes concerning volume and surface area. The figures of prisms, cylinders, pyramids, cones and spheres are all 3D figures. Volume measures the amount a solid figure can hold. Volume is measured in terms of units³ and can be measured in inches, feet, meters, centimeters, and millimeters. Read more...iWorksheets :3Study Guides :1
Similarity and scale
Similarity refers to similar figures and the ability to compare them using proportions. Similar figures have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :3Study Guides :1

G.2D. Geometry: Two-Dimensional Shapes (G.2D)

G.2D.1. Discover, evaluate and analyze the relationships between lines, angles, and polygons to solve real-world and mathematical problems; express proofs in a form that clearly justifies the reasoning, such as two-column proofs, paragraph proofs, flow charts, or illustrations.
G.2D.1.1. Apply the properties of parallel and perpendicular lines, including properties of angles formed by a transversal, to solve real-world and mathematical problems and determine if two lines are parallel, using algebraic reasoning and proofs.
Plane Figures: Lines and Angles
Plane figures in regards to lines and angles refer to the coordinate plane and the various lines and angles within the coordinate plane. Lines in a coordinate plane can be parallel or perpendicular. Angles in a coordinate plane can be acute, obtuse, right or straight. Read more...iWorksheets :3Study Guides :1
Plane figures
Plane figures refer to points, lines, angles, and planes in the coordinate plane. Lines can be parallel or perpendicular. Angles can be categorized as acute, obtuse or right. Angles can also be complementary or supplementary depending on how many degrees they add up to. Plane figures can also refer to shapes in the coordinate plane. Triangles, quadrilaterals and other polygons can be shown in the coordinate plane. Read more...iWorksheets :4Study Guides :1
G.2D.1.2. Apply the properties of angles, including corresponding, exterior, interior, vertical, complementary, and supplementary angles to solve real-world and mathematical problems using algebraic reasoning and proofs.
Finding Volume
Volume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1
G.2D.1.5. Use coordinate geometry to represent and analyze line segments and polygons, including determining lengths, midpoints, and slopes of line segments.
Plane figures
Plane figures refer to points, lines, angles, and planes in the coordinate plane. Lines can be parallel or perpendicular. Angles can be categorized as acute, obtuse or right. Angles can also be complementary or supplementary depending on how many degrees they add up to. Plane figures can also refer to shapes in the coordinate plane. Triangles, quadrilaterals and other polygons can be shown in the coordinate plane. Read more...iWorksheets :4Study Guides :1
G.2D.1.6. Apply the properties of polygons to solve real-world and mathematical problems involving perimeter and area (e.g., triangles, special quadrilaterals, regular polygons up to 12 sides, composite figures).
Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
Perimeter and area
What Is Perimeter and Area? Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To find the perimeter of any figure, simply add up the measures of the sides of the figure. Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
G.2D.1.7. Apply the properties of congruent or similar polygons to solve real-world and mathematical problems using algebraic and logical reasoning.
Geometric Proportions
Geometric proportions compare two similar polygons. Similar polygons have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :4Study Guides :1
Plane Figures: Lines and Angles
Plane figures in regards to lines and angles refer to the coordinate plane and the various lines and angles within the coordinate plane. Lines in a coordinate plane can be parallel or perpendicular. Angles in a coordinate plane can be acute, obtuse, right or straight. Read more...iWorksheets :3Study Guides :1
Plane Figures: Closed Figure Relationships
Plane figures in regards to closed figure relationships refer to the coordinate plane and congruent figures, circles, circle graphs, transformations and symmetry. Congruent figures have the same size and shape. Transformations are made up of translations, rotations and reflections. A translation of a figure keeps the size and shape of a figure, but moves it to a different location. A rotation turns a figure about a point on the figure. A reflection of a figure produces a mirror image of the figure when it is reflected in a given line. Read more...iWorksheets :3Study Guides :1
Patterns in geometry
Patterns in geometry refer to shapes and their measures. Shapes can be congruent to one another. Shapes can also be manipulated to form similar shapes. The types of transformations are reflection, rotation, dilation and translation. With a reflection, a figure is reflected, or flipped, in a line so that the new figure is a mirror image on the other side of the line. A rotation rotates, or turns, a shape to make a new figure. A dilation shrinks or enlarges a figure. A translation shifts a figure to a new position. Read more...iWorksheets :3Study Guides :1
Ratios, proportions and percents
Numerical proportions compare two numbers. A proportion is usually in the form of a:b or a/b. There are 4 parts to a proportion and it can be solved when 3 of the 4 parts are known. Proportions can be solved using the Cross Product Property, which states that the cross products of a proportion are equal. Read more...iWorksheets :4Study Guides :1
Similarity and scale
Similarity refers to similar figures and the ability to compare them using proportions. Similar figures have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :3Study Guides :1
G.2D.1.9. Use numeric, graphic and algebraic representations of transformations in two dimensions, such as reflections, translations, dilations, and rotations about the origin by multiples of 90 ̊, to solve problems involving figures on a coordinate plane and identify types of symmetry.
Patterns in geometry
Patterns in geometry refer to shapes and their measures. Shapes can be congruent to one another. Shapes can also be manipulated to form similar shapes. The types of transformations are reflection, rotation, dilation and translation. With a reflection, a figure is reflected, or flipped, in a line so that the new figure is a mirror image on the other side of the line. A rotation rotates, or turns, a shape to make a new figure. A dilation shrinks or enlarges a figure. A translation shifts a figure to a new position. Read more...iWorksheets :3Study Guides :1
Similarity and scale
Similarity refers to similar figures and the ability to compare them using proportions. Similar figures have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :3Study Guides :1

G.3D. Geometry: Three-Dimensional Shapes (G.3D)

G.3D.1. Solve real-world and mathematical problems involving three-dimensional figures.
G.3D.1.1. Solve real-world and mathematical problems using the surface area and volume of prisms, cylinders, pyramids, cones, spheres, and composites of these figures. Use nets, measuring devices, or formulas as appropriate.
Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
Finding Volume
Volume measures the amount a solid figure can hold. Volume is measured in terms of cubed units and can be measured in inches, feet, meters, centimeters, and millimeters. The formula for the volume of a rectangular prism is V = l · w · h, where l is the length, w is the width, and h is the height. Read more...iWorksheets :4Study Guides :1
Three dimensional geometry/Measurement
Three-dimensional geometry/measurement refers to three-dimensional (3D) shapes and the measurement of their shapes concerning volume and surface area. The figures of prisms, cylinders, pyramids, cones and spheres are all 3D figures. Volume measures the amount a solid figure can hold. Volume is measured in terms of units³ and can be measured in inches, feet, meters, centimeters, and millimeters. Read more...iWorksheets :3Study Guides :1
G.3D.1.2. Use ratios derived from similar three-dimensional figures to make conjectures, generalize, and to solve for unknown values such as angles, side lengths, perimeter or circumference of a face, area of a face, and volume.
Similarity and scale
Similarity refers to similar figures and the ability to compare them using proportions. Similar figures have equal corresponding angles and corresponding sides that are in proportion. A proportion equation can be used to prove two figures to be similar. If two figures are similar, the proportion equation can be used to find a missing side of one of the figures. Read more...iWorksheets :3Study Guides :1

G.C. Geometry: Circles (G.C)

G.C.1. Solve real-world and mathematical problems using the properties of circles.
G.C.1.1. Apply the properties of circles to solve problems involving circumference and area, approximate values and in terms of !, using algebraic and logical reasoning.
Measurement, Perimeter, and Circumference
There are two systems used to measure objects, the U.S. Customary system and the metric system. The U.S. Customary system measures length in inches, feet, yards and miles. The metric system is a base ten system and measures length in kilometers, meters, and millimeters. Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To get the perimeter of any figure, simply add up the measures of the sides of the figure. Read more...iWorksheets :3Study Guides :1
Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
Perimeter and area
What Is Perimeter and Area? Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To find the perimeter of any figure, simply add up the measures of the sides of the figure. Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
G.C.1.2. Apply the properties of circles and relationships among angles; arcs; and distances in a circle among radii, chords, secants and tangents to solve problems using algebraic and logical reasoning.
Measurement, Perimeter, and Circumference
There are two systems used to measure objects, the U.S. Customary system and the metric system. The U.S. Customary system measures length in inches, feet, yards and miles. The metric system is a base ten system and measures length in kilometers, meters, and millimeters. Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To get the perimeter of any figure, simply add up the measures of the sides of the figure. Read more...iWorksheets :3Study Guides :1
Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
Perimeter and area
What Is Perimeter and Area? Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To find the perimeter of any figure, simply add up the measures of the sides of the figure. Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
G.C.1.3. Recognize and write the radius r, center (h, k), and standard form of the equation of a circle (x − h)^2 + (y − k)^2 = r^2 with and without graphs.
Measurement, Perimeter, and Circumference
There are two systems used to measure objects, the U.S. Customary system and the metric system. The U.S. Customary system measures length in inches, feet, yards and miles. The metric system is a base ten system and measures length in kilometers, meters, and millimeters. Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To get the perimeter of any figure, simply add up the measures of the sides of the figure. Read more...iWorksheets :3Study Guides :1
Exploring Area and Surface Area
Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a triangle is: A = 1/2 · b · h, where b is the base and h is the height. The area formula for a circle is: A = π · r², where π is usually 3.14 and r is the radius of the circle. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1
Perimeter and area
What Is Perimeter and Area? Perimeter is the measurement of the distance around a figure. It is measured in units and can be measured by inches, feet, blocks, meters, centimeters or millimeters. To find the perimeter of any figure, simply add up the measures of the sides of the figure. Area is the amount of surface a shape covers. Area is measured in square units, whether the units are inches, feet, meters or centimeters. The area formula for a parallelogram is: A = b · h, where b is the base and h is the height. Read more...iWorksheets :4Study Guides :1

G.RT. Geometry: Right Triangle Trigonometry (G.RT)

G.RT.1. Develop and verify mathematical relationships of right triangles and trigonometric ratios to solve real-world and mathematical problems.
G.RT.1.1. Apply the distance formula and the Pythagorean Theorem and its converse to solve real-world and mathematical problems, as approximate and exact values, using algebraic and logical reasoning (include Pythagorean Triples).
The Pythagorean Theorem
Pythagorean Theorem is a fundamental relation in Euclidean geometry. It states the sum of the squares of the legs of a right triangle equals the square of the length of the hypotenuse. Determine the distance between two points using the Pythagorean Theorem. Read more...iWorksheets :4Study Guides :1
G.RT.1.2. Verify and apply properties of right triangles, including properties of 45-45-90 and 30-60-90 triangles, to solve problems using algebraic and logical reasoning.
The Pythagorean Theorem
Pythagorean Theorem is a fundamental relation in Euclidean geometry. It states the sum of the squares of the legs of a right triangle equals the square of the length of the hypotenuse. Determine the distance between two points using the Pythagorean Theorem. Read more...iWorksheets :4Study Guides :1
G.RT.1.4. Apply the trigonometric functions as ratios (sine, cosine, and tangent) to find side lengths in right triangles in real-world and mathematical problems.
The Pythagorean Theorem
Pythagorean Theorem is a fundamental relation in Euclidean geometry. It states the sum of the squares of the legs of a right triangle equals the square of the length of the hypotenuse. Determine the distance between two points using the Pythagorean Theorem. Read more...iWorksheets :4Study Guides :1

OK.A2. Algebra 2 (A2)

A2.N. Number & Operations (N)

A2.N.1. Extend the understanding of number and operations to include complex numbers, matrices, radical expressions, and expressions written with rational exponents.
A2.N.1.4. Understand and apply the relationship of rational exponents to integer exponents and radicals to solve problems.
Polynomials and Exponents
A polynomial is an expression which is in the form of axn, where a is any real number and n is a whole number. If a polynomial has only one term, it is called a monomial. If it has two terms, it is a binomial and if it has three terms, it is a trinomial. The standard form of a polynomial is when the powers of the variables are decreasing from left to right. Read more...iWorksheets :4Study Guides :1

A2.A. Algebraic Reasoning & Algebra (A)

A2.A.1. Represent and solve mathematical and real-world problems using nonlinear equations and systems of linear equations; interpret the solutions in the original context.
A2.A.1.1. Represent real-world or mathematical problems using quadratic equations and solve using various methods (including graphing calculator or other appropriate technology), factoring, completing the square, and the quadratic formula. Find non-real roots when they exist.
Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :3Study Guides :1
A2.A.1.2. Represent real-world or mathematical problems using exponential equations, such as compound interest, depreciation, and population growth, and solve these equations graphically (including graphing calculator or other appropriate technology) or algebraically.
Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :3Study Guides :1
A2.A.1.7. Solve real-world and mathematical problems that can be modeled using arithmetic or finite geometric sequences or series given the nth terms and sum formulas. Graphing calculators or other appropriate technology may be used.
Sequences
A sequence is an ordered list of numbers. Sequences are the result of a pattern or rule. A pattern or rule can be every other number or some formula such as y = 2x + 3. When a pattern or rule is given, a sequence can be found. When a sequence is given, the pattern or rule can be found. Read more...iWorksheets :4Study Guides :1
A2.A.2. Represent and analyze mathematical situations and structures using algebraic symbols using various strategies to write equivalent forms of expressions.
A2.A.2.2. Add, subtract, multiply, divide, and simplify polynomial and rational expressions.
Introduction to Algebra
Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more. Algebra uses variables to represent a value that is not yet known. Read more...iWorksheets :3Study Guides :1
Equations and inequalities
An equation is mathematical statement that shows that two expressions are equal to each other. The expressions used in an equation can contain variables or numbers. Inequalities are mathematical equations that compare two quantities using greater than, >; greater than or equal to ≥; less than, <; and less than or equal to, ≤. Inequalities are also solved by using inverse operations. Read more...iWorksheets :3Study Guides :1
Polynomials and Exponents
A polynomial is an expression which is in the form of axn, where a is any real number and n is a whole number. If a polynomial has only one term, it is called a monomial. If it has two terms, it is a binomial and if it has three terms, it is a trinomial. The standard form of a polynomial is when the powers of the variables are decreasing from left to right. Read more...iWorksheets :4Study Guides :1
A2.A.2.3. Recognize that a quadratic function has different equivalent representations [f(x) = ax^2 + bx + c, f(x) = a(x − h)^2 + k, and f(x) = (x − h)(x − k)]. Identify and use the representation that is most appropriate to solve real-world and mathematical problems.
Functions
A function is a rule that is performed on a number, called an input, to produce a result called an output. The rule consists of one or more mathematical operations that are performed on the input. An example of a function is y = 2x + 3, where x is the input and y is the output. The operations of multiplication and addition are performed on the input, x, to produce the output, y. By substituting a number for x, an output can be determined. Read more...iWorksheets :3Study Guides :1
A2.A.2.4. Rewrite expressions involving radicals and rational exponents using the properties of exponents.
Polynomials and Exponents
A polynomial is an expression which is in the form of axn, where a is any real number and n is a whole number. If a polynomial has only one term, it is called a monomial. If it has two terms, it is a binomial and if it has three terms, it is a trinomial. The standard form of a polynomial is when the powers of the variables are decreasing from left to right. Read more...iWorksheets :4Study Guides :1

A2.F. Functions (F)

A2.F.1. Understand functions as descriptions of covariation (how related quantities vary together).
A2.F.1.1. Use algebraic, interval, and set notations to specify the domain and range of functions of various types and evaluate a function at a given point in its domain.
Nonlinear Functions and Set Theory
A function can be in the form of y = mx + b. This is an equation of a line, so it is said to be a linear function. Nonlinear functions are functions that are not straight lines. Some examples of nonlinear functions are exponential functions and parabolic functions. An exponential function, y = aˆx, is a curved line that gets closer to but does not touch the x-axis. A parabolic function, y = ax² + bx +c, is a U-shaped line that can either be facing up or facing down. Read more...iWorksheets :4Study Guides :1
A2.F.1.3. Graph a quadratic function. Identify the x- and y-intercepts, maximum or minimum value, axis of symmetry, and vertex using various methods and tools that may include a graphing calculator or appropriate technology.
Linear equations
Linear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :3Study Guides :1
A2.F.1.4. Graph exponential and logarithmic functions. Identify asymptotes and x- and y-intercepts using various methods and tools that may include graphing calculators or other appropriate technology. Recognize exponential decay and growth graphically and algebraically.
Linear equations
Linear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :3Study Guides :1
A2.F.1.5. Analyze the graph of a polynomial function by identifying the domain, range, intercepts, zeros, relative maxima, relative minima, and intervals of increase and decrease.
Linear equations
Linear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :3Study Guides :1
A2.F.1.6. Graph a rational function and identify the x- and y-intercepts, vertical and horizontal asymptotes, using various methods and tools that may include a graphing calculator or other appropriate technology. (Excluding slant or oblique asymptotes and holes.)
Linear equations
Linear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :3Study Guides :1
A2.F.1.7. Graph a radical function (square root and cube root only) and identify the x- and y-intercepts using various methods and tools that may include a graphing calculator or other appropriate technology.
Linear equations
Linear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :3Study Guides :1
A2.F.1.8. Graph piecewise functions with no more than three branches (including linear, quadratic, or exponential branches) and analyze the function by identifying the domain, range, intercepts, and intervals for which it is increasing, decreasing, and constant.
Linear equations
Linear equations are equations that have two variables and when graphed are a straight line. Linear equation can be graphed based on their slope and y-intercept. The standard equation for a line is y = mx + b, where m is the slope and b is the y-intercept. Slope can be found with the formula m = (y2 - y1)/(x2 - x1), which represents the change in y over the change in x. Read more...iWorksheets :3Study Guides :1

A2.D. Data & Probability (D)

A2.D.1. Display, describe, and compare data. For linear and nonlinear relationships, make predictions and assess the reliability of those predictions.
A2.D.1.1. Use the mean and standard deviation of a data set to fit it to a normal distribution (bell-shaped curve).
Organizing Data
The data can be organized into groups, and evaluated. Mean, mode, median and range are different ways to evaluate data. The mean is the average of the data. The mode refers to the number that occurs the most often in the data. The median is the middle number when the data is arranged in order from lowest to highest. The range is the difference in numbers when the lowest number is subtracted from the highest number. Data can be organized into a table, such as a frequency table. Read more...iWorksheets :3Study Guides :1
Using graphs to analyze data
There are different types of graphs and ways that data can be analyzed using the graphs. Graphs are based on the coordinate plane. Data are the points on the plane. If collecting data about the ages of people living on one street, the data is all the ages. The data can then be organized into groups, and evaluated. Mean, mode and median are different ways to evaluate data. Read more...iWorksheets :3Study Guides :1
Collecting and describing data
Collecting and describing data refers to the different ways to gather data and the different ways to arrange data whether it is in a table, graph, or pie chart. Data can be collected by either taking a sample of a population or by conducting a survey. Describing data looks at data after it has been organized and makes conclusions about the data. Read more...iWorksheets :3Study Guides :1
A2.D.1.2. Collect data and use scatterplots to analyze patterns and describe linear, exponential or quadratic relationships between two variables. Using graphing calculators or other appropriate technology, determine regression equation and correlation coefficients; use regression equations to make predictions and correlation coefficients to assess the reliability of those predictions.
Collecting and describing data
Collecting and describing data refers to the different ways to gather data and the different ways to arrange data whether it is in a table, graph, or pie chart. Data can be collected by either taking a sample of a population or by conducting a survey. Describing data looks at data after it has been organized and makes conclusions about the data. Read more...iWorksheets :3Study Guides :1
Linear relationships
Linear relationships refer to two quantities that are related with a linear equation. Since a linear equation is a line, a linear relationship refers to two quantities on a line and their relationship to one another. This relationship can be direct or inverse. If y varies directly as x, it means if y is doubled, then x is doubled. The formula for a direct variation is y = kx, where k is the constant of variation. Read more...iWorksheets :3Study Guides :1
Standards

NewPath Learning resources are fully aligned to US Education Standards. Select a standard below to view correlations to your selected resource:

Alabama Courses of StudyAlaska Content and Performance StandardsArizona's College and Career Ready StandardsArkansas Curriculum FrameworksCalifornia Content StandardsColorado Academic Standards (CAS)Common Core State StandardsConnecticut Core StandardsDelaware Standards and InstructionFlorida StandardsGeorgia Standards of ExcellenceHawaii Content and Performance StandardsIdaho Content StandardsIllinois Learning StandardsIndiana Academic StandardsIowa CoreKansas Academic StandardsKentucky Academic StandardsLouisiana Academic StandardsMaine Learning ResultsMaryland College and Career-Ready StandardsMaryland StandardsMassachusetts Curriculum FrameworksMichigan Academic StandardsMinnesota Academic StandardsMississippi College & Career Readiness StandardsMissouri Learning StandardsMontana Content StandardsNational STEM StandardsNebraska Core Academic Content StandardsNevada Academic Content StandardsNew Hampshire College and Career Ready StandardsNew Jersey Common Core StandardsNew Jersey Student Learning StandardsNew Mexico Content StandardsNew York State Learning Standards and Core CurriculumNorth Carolina Standard Course of StudyNorth Dakota Academic Content StandardsOhio Learning StandardsOklahoma Academic StandardsOregon Academic Content StandardsPennsylvania Core and Academic StandardsRhode Island World-Class StandardsSouth Carolina Standards & LearningSouth Dakota Content StandardsTennessee Academic StandardsTexas Assessments of Academic Readiness (STAAR)Texas Essential Knowledge and Skills (TEKS)U.S. National StandardsUtah Core StandardsVermont Framework of Standards and LearningVirgin Islands Common Core StandardsVirginia Standards of LearningWashington DC Academic StandardsWashington State K–12 Learning Standards and GuidelinesWest Virginia College and Career Readiness StandardsWisconsin Academic StandardsWyoming Content and Performance Standards