West Virginia College and Career Readiness Standards for High School Science
WV.S.9. Earth and Space Science
S.9.ESS. Earth and Space Science Content
Space Systems
S.9.ESS.1. Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun’s core to release energy that eventually reaches Earth in the form of radiation.
S.9.ESS.2. Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.
S.9.ESS.5. Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.
S.9.ESS.6. Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth’s formation and early history.
S.9.ESS.7. Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.
S.9.ESS.8. Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to other Earth systems.
S.9.ESS.14. Analyze geoscience data and the results from the global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth systems.
Human Sustainability
S.9.ESS.15. Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.
S.9.ESS.17. Create a computational simulation to illustrate the relationships among management of natural resources, the sustainability of human populations, and biodiversity.
S.9.ESS.19. Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.
S.HS.PS.1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.
S.HS.PS.2. Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.
S.HS.PS.5. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
S.HS.PS.6. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.
S.HS.PS.8. Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.
S.HS.PS.12. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.
S.HS.PS.15. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.
S.HS.PS.16. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).
Matter and EnergyMatter is any substance that has mass and takes up space. Energy can be transferred as heat or as work. Energy is a property that matter has. Read more...iWorksheets :3
S.HS.PS.17. Design, builds, and refines a device that works within given constraints to convert one form of energy into another form of energy.
States of MatterThere are Four states of matter observable in everyday life: solid, liquid, gas, and plasma. Matter in the solid state has a fixed volume and shape, with component particles (atoms, molecules or ions) close together and fixed into place. Matter in the liquid state has a fixed volume, but has a variable shape that adapts to fit its container. Its particles are close together but move freely. Matter in the gaseous state has both variable volume and shape, adapting both to fit its container. Its particles are neither close together nor fixed in place. Matter in the plasma state has variable volume and shape. Read more...iWorksheets :3
S.HS.PS.18. Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).
S.HS.PS.20. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.
S.HS.PS.22. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.
S.HS.C.1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.
S.HS.C.4. Produce electron configurations and orbital diagrams for any element on the periodic table and predict the chemical properties of the element from the electron configuration.
S.HS.C.5. Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.
S.HS.C.9. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
S.HS.C.10. Predict the products, write and classify balanced chemical reactions including single replacement, double replacement, composition, decomposition, combustion and neutralization reactions.
S.HS.C.15. Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.
S.HS.C.17. Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.
S.HS.C.20. Perform calculations using the combined gas laws.
States of MatterThere are Four states of matter observable in everyday life: solid, liquid, gas, and plasma. Matter in the solid state has a fixed volume and shape, with component particles (atoms, molecules or ions) close together and fixed into place. Matter in the liquid state has a fixed volume, but has a variable shape that adapts to fit its container. Its particles are close together but move freely. Matter in the gaseous state has both variable volume and shape, adapting both to fit its container. Its particles are neither close together nor fixed in place. Matter in the plasma state has variable volume and shape. Read more...iWorksheets :3
S.HS.C.21. Perform the following “mole” calculations showing answers rounded to the correct number of significant figures:
S.HS.P.4. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.
S.HS.P.11. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.
S.HS.P.13. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).
Matter and EnergyMatter is any substance that has mass and takes up space. Energy can be transferred as heat or as work. Energy is a property that matter has. Read more...iWorksheets :3
S.HS.P.14. Design, builds, and refines a device that works within given constraints to convert one form of energy into another form of energy.
States of MatterThere are Four states of matter observable in everyday life: solid, liquid, gas, and plasma. Matter in the solid state has a fixed volume and shape, with component particles (atoms, molecules or ions) close together and fixed into place. Matter in the liquid state has a fixed volume, but has a variable shape that adapts to fit its container. Its particles are close together but move freely. Matter in the gaseous state has both variable volume and shape, adapting both to fit its container. Its particles are neither close together nor fixed in place. Matter in the plasma state has variable volume and shape. Read more...iWorksheets :3
S.HS.P.15. Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).
S.HS.P.19. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.
S.HS.P.21. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.
S.HS.ENV.1. Compare and contrast the rate elements cycle through the ecosphere, describing natural and human influences on reaction rates:
S.HS.ENV.1.1. Carbon
Ecology IMatch each ecology term to its definition like Energy pyramid, Decomposer, Carnivore, Ecosystem, Owl pellet, Omnivore and many more. Which human activity would be more likely to have a positive/negative impact on the environment? Which factor determines the type of terrestrial plants that grow in an area? Which energy transfer is least likely to be found in nature? Read more...iWorksheets :4Vocabulary :2
Ecology IIMatch each Ecology term to its definition like Trophic level, Food web, Consumer, Energy, Herbivore and more. Which component is not recycled in an ecosystem? Why Vultures, which are classified as scavengers, are an important part of an ecosystem? Which characteristic does creeping vine that is parasitic on other plants shares with all other heterotrophs? Read more...iWorksheets :3Vocabulary :2
S.HS.ENV.1.2. Nitrogen
Ecology IMatch each ecology term to its definition like Energy pyramid, Decomposer, Carnivore, Ecosystem, Owl pellet, Omnivore and many more. Which human activity would be more likely to have a positive/negative impact on the environment? Which factor determines the type of terrestrial plants that grow in an area? Which energy transfer is least likely to be found in nature? Read more...iWorksheets :4Vocabulary :2
Ecology IIMatch each Ecology term to its definition like Trophic level, Food web, Consumer, Energy, Herbivore and more. Which component is not recycled in an ecosystem? Why Vultures, which are classified as scavengers, are an important part of an ecosystem? Which characteristic does creeping vine that is parasitic on other plants shares with all other heterotrophs? Read more...iWorksheets :3Vocabulary :2
S.HS.ENV.1.4. Oxygen
Ecology IMatch each ecology term to its definition like Energy pyramid, Decomposer, Carnivore, Ecosystem, Owl pellet, Omnivore and many more. Which human activity would be more likely to have a positive/negative impact on the environment? Which factor determines the type of terrestrial plants that grow in an area? Which energy transfer is least likely to be found in nature? Read more...iWorksheets :4Vocabulary :2
Ecology IIMatch each Ecology term to its definition like Trophic level, Food web, Consumer, Energy, Herbivore and more. Which component is not recycled in an ecosystem? Why Vultures, which are classified as scavengers, are an important part of an ecosystem? Which characteristic does creeping vine that is parasitic on other plants shares with all other heterotrophs? Read more...iWorksheets :3Vocabulary :2
S.HS.ENV.2. Explain how the chemical components of biological and physical processes fit in the overall process of biogeochemical cycling such as photosynthesis, respiration, nitrogen fixation, or decomposition.
Ecology IMatch each ecology term to its definition like Energy pyramid, Decomposer, Carnivore, Ecosystem, Owl pellet, Omnivore and many more. Which human activity would be more likely to have a positive/negative impact on the environment? Which factor determines the type of terrestrial plants that grow in an area? Which energy transfer is least likely to be found in nature? Read more...iWorksheets :4Vocabulary :2
Ecology IIMatch each Ecology term to its definition like Trophic level, Food web, Consumer, Energy, Herbivore and more. Which component is not recycled in an ecosystem? Why Vultures, which are classified as scavengers, are an important part of an ecosystem? Which characteristic does creeping vine that is parasitic on other plants shares with all other heterotrophs? Read more...iWorksheets :3Vocabulary :2
S.HS.ENV.7. Relate logistic, exponential, and irruptive population growth to population dynamics including:
S.HS.ENV.7.1. Natural selection
Evolution and classificationCategorize organisms using a hierarchical classification system based on similarities and differences. Evolutionary theory is a scientific explanation for the unity and diversity of life. Analyze the effects of evolutionary mechanisms, including genetic drift, gene flow, mutation and recombination. Read more...iWorksheets :3
S.HS.ENV.7.2. Predator/prey relationships
Evolution and classificationCategorize organisms using a hierarchical classification system based on similarities and differences. Evolutionary theory is a scientific explanation for the unity and diversity of life. Analyze the effects of evolutionary mechanisms, including genetic drift, gene flow, mutation and recombination. Read more...iWorksheets :3
S.HS.ENV.7.3. Reproductive strategies
Plant structure and functionPlants are living organisms made up of cells. Plants need sunlight and water to live and grow healthy. Many plants, but not all plants, produce flowers, which make fruit and seeds in order for the plant to reproduce. There are two different types of root systems: A fibrous root system has many roots that grow in many different directions. Plants that have a taproot system have only one large main root growing from the plant’s stem. Read more...iWorksheets :4Vocabulary :2
S.HS.ENV.8. Create food web diagrams to explain how adding and/or removing a species from an ecosystem may affect other organisms and the entire ecosystem.
Ecology IMatch each ecology term to its definition like Energy pyramid, Decomposer, Carnivore, Ecosystem, Owl pellet, Omnivore and many more. Which human activity would be more likely to have a positive/negative impact on the environment? Which factor determines the type of terrestrial plants that grow in an area? Which energy transfer is least likely to be found in nature? Read more...iWorksheets :4Vocabulary :2
Ecology IIMatch each Ecology term to its definition like Trophic level, Food web, Consumer, Energy, Herbivore and more. Which component is not recycled in an ecosystem? Why Vultures, which are classified as scavengers, are an important part of an ecosystem? Which characteristic does creeping vine that is parasitic on other plants shares with all other heterotrophs? Read more...iWorksheets :3Vocabulary :2
S.HS.ENV.10. Analyze biological diversity as it relates to the stability of an ecosystem.
Vertebrates IIA vertebrate is an animal with a spinal cord surrounded by cartilage or bone. The vertebrates are also characterized by a muscular system consisting primarily of bilaterally paired masses and a central nervous system partly enclosed within the backbone. The 7 classes of vertebrates are: Class Aves, Class Reptilia, Class Agnatha, Class Amphibia, Class Mammalia, Class Osteichthyes, Class Chondrichthyes. Read more...iWorksheets :3Vocabulary :3
S.HS.ENV.12. Compare and contrast legislation and international agreements associated with protecting habitats, ecosystems, and species:
S.HS.ENV.14. Identify natural and anthropogenic sources of primary, secondary, and indoor air pollutants and the resulting environmental and health effects.
S.HS.ENV.16. Identify causes for the thinning of the ozone layer and evaluate the effectiveness of the Montreal Protocol for reducing ozone depletion.
S.HS.ENV.17. Debate climate change as it relates to natural forces, greenhouse gases, and human changes in atmospheric concentrations of greenhouse gases, and relevant laws and treaties.
S.HS.ENV.18. Identify sources, uses, quality, conservation, and global distribution of water.
S.HS.FS.3. Analyze modes of transfer and the factors affecting persistence of evidence (Locard’s Exchange Principle):
S.HS.FS.3.2. Direct
DNA technology/genetic engineeringThis topic is about biology and Forensic science. Students will learn to identify the structure and function of DNA, RNA and protein. They will also learn to describe the importance of generic information to forensics. Read more...iWorksheets :4Vocabulary :3
S.HS.FS.12. Analyze the composition of blood as evidence:
S.HS.FS.12.3. DNA fingerprinting
DNA technology/genetic engineeringThis topic is about biology and Forensic science. Students will learn to identify the structure and function of DNA, RNA and protein. They will also learn to describe the importance of generic information to forensics. Read more...iWorksheets :4Vocabulary :3
S.HS.FS.19. Research and evaluate technological advances and careers related to the field of forensics.
DNA technology/genetic engineeringThis topic is about biology and Forensic science. Students will learn to identify the structure and function of DNA, RNA and protein. They will also learn to describe the importance of generic information to forensics. Read more...iWorksheets :4Vocabulary :3
WV.S.HS.HAP. Human Anatomy and Physiology
S.HS.HAP. Human Anatomy and Physiology Content
S.HS.HAP.2. Describe the organizational levels, interdependency and the interaction of:
S.HS.HAP.2.1. Cells
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.2.2. Tissues
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.3. Categorize, by structure and function, the various types of human tissue:
S.HS.HAP.3.1. Muscle
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.3.2. Epithelial
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.3.3. Connective
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.6. Correlate the structure and function of the elements of the skeletal system:
S.HS.HAP.6.3. Insertions
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.9. Model the muscular system including:
S.HS.HAP.9.1. Locations
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.9.2. Origins
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.9.3. Insertions
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.9.4. Muscle groups
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.9.5. Types of muscles
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.15. Incorporate the role of endocrine glands and their hormones into the overall functions and dysfunctions of the body.
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.16. Analyze the role of components and processes of the digestive system in supplying essential nutrients.
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.17. Explain how structures of the respiratory system are essential to cellular respiration, gas exchange and communication.
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.20. Integrate the functions of the excretory system to the maintenance of the other body systems.
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.21. Compare and contrast the structure and function of male and female reproductive systems.
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.22. Outline the events of reproduction for the formation of gametes through fertilizations and embryological development.
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.HS.HAP.24. Research disease causative factors, symptoms, prevention and treatment.
Microorganisms IHyphae - threadlike filaments of branching cells that make up the bodies of multicellular fungi. Gymnosperm - group of vascular plants that develop seeds without a protective outer covering; they do not produce flowers or fruit. Flagellum - a tail-like structure found on bacteria and select protists which helps them to move. Volvox - a freshwater, chlorophyll-containing green alga, that occurs in ball-shaped colonies. Read more...iWorksheets :4Vocabulary :5
WV.S.9-10.L. Science Literacy
Reading- Craft and Structure
S.9-10.L.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics.
S.10.LS.1. Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.
Cell ReproductionThe process where one cell forms two identical daughter cells. Mitosis is how somatic—or non-reproductive cells—divide. Meiosis is cell division that creates sex cells, like female egg cells or male sperm cells. Meiosis has two cycles of cell division, called Meiosis I and Meiosis II. Read more...iWorksheets :4
Nucleic acids and protein synthesisThe term nucleic acid is the name for DNA and RNA. They are composed of nucleotides. DNA molecules are double-stranded and RNA molecules are single-stranded. To initiate the process of information transfer, one strand of the double-stranded DNA chain serves as a template for the synthesis of a single strand of RNA that is complementary to the DNA strand. Read more...iWorksheets :4Vocabulary :3
S.10.LS.2. Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
S.10.LS.3. Plan and conduct an investigation to provide evidence that feedback mechanism maintain homeostasis.
Human biology IBronchi - large tubules that branch from the trachea to carry air in and out of the lungs. Capillaries - the smallest blood vessels found in very rich networks
between arteries and veins; the site where many substances are exchanged. Antibodies - a specific protein produced by B lymphocytes that attaches to an antigen and leads to its removal. Read more...iWorksheets :4Vocabulary :7
Human biology IIAntigen - a molecule that the immune system recognizes as part of the body or foreign to the body. Appendicular skeleton - a part of the skeleton composed of 126 bones found in the flexible regions of the body, including shoulders, hips and limbs. Axial skeleton - the central, anchoring part of the bony skeleton that
consists of the skull, backbone (vertebrae) and rib cage. Bile - a chemical produced by the liver and stored temporarily in the gall bladder that is released into the intestines to help in fat digestion. Read more...iWorksheets :3Vocabulary :7
Matter and Energy in Organisms and Ecosystems
S.10.LS.4. Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.
Photosynthesis and respirationPhotosynthesis may be thought of as a chemical reaction in which carbon dioxide from the air and water from the soil plus solar energy combine to produce carbohydrate and oxygen. What is similarity between human skeletal muscles and some bacteria? Match each Photosynthesis ad respiration term to its definition like Glucose, Chloroplast, Organelle, Guard Cells and many more. Read more...iWorksheets :4Vocabulary :2
S.10.LS.5. Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.
Cell ReproductionThe process where one cell forms two identical daughter cells. Mitosis is how somatic—or non-reproductive cells—divide. Meiosis is cell division that creates sex cells, like female egg cells or male sperm cells. Meiosis has two cycles of cell division, called Meiosis I and Meiosis II. Read more...iWorksheets :4
S.10.LS.6. Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.
Cell processesFreeCellular metabolism is the set of chemical reactions that occur in living organisms in order to maintain life. Living organisms are unique in that they can extract energy from their environments and use it to carry out activities such as growth, development, and reproduction. Read more...iWorksheets :3Vocabulary :7
S.10.LS.7. Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.
Ecology IMatch each ecology term to its definition like Energy pyramid, Decomposer, Carnivore, Ecosystem, Owl pellet, Omnivore and many more. Which human activity would be more likely to have a positive/negative impact on the environment? Which factor determines the type of terrestrial plants that grow in an area? Which energy transfer is least likely to be found in nature? Read more...iWorksheets :4Vocabulary :2
Ecology IIMatch each Ecology term to its definition like Trophic level, Food web, Consumer, Energy, Herbivore and more. Which component is not recycled in an ecosystem? Why Vultures, which are classified as scavengers, are an important part of an ecosystem? Which characteristic does creeping vine that is parasitic on other plants shares with all other heterotrophs? Read more...iWorksheets :3Vocabulary :2
S.10.LS.8. Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.
Ecology IMatch each ecology term to its definition like Energy pyramid, Decomposer, Carnivore, Ecosystem, Owl pellet, Omnivore and many more. Which human activity would be more likely to have a positive/negative impact on the environment? Which factor determines the type of terrestrial plants that grow in an area? Which energy transfer is least likely to be found in nature? Read more...iWorksheets :4Vocabulary :2
Ecology IIMatch each Ecology term to its definition like Trophic level, Food web, Consumer, Energy, Herbivore and more. Which component is not recycled in an ecosystem? Why Vultures, which are classified as scavengers, are an important part of an ecosystem? Which characteristic does creeping vine that is parasitic on other plants shares with all other heterotrophs? Read more...iWorksheets :3Vocabulary :2
S.10.LS.9. Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.
Cell processesFreeCellular metabolism is the set of chemical reactions that occur in living organisms in order to maintain life. Living organisms are unique in that they can extract energy from their environments and use it to carry out activities such as growth, development, and reproduction. Read more...iWorksheets :3Vocabulary :7
Photosynthesis and respirationPhotosynthesis may be thought of as a chemical reaction in which carbon dioxide from the air and water from the soil plus solar energy combine to produce carbohydrate and oxygen. What is similarity between human skeletal muscles and some bacteria? Match each Photosynthesis ad respiration term to its definition like Glucose, Chloroplast, Organelle, Guard Cells and many more. Read more...iWorksheets :4Vocabulary :2
Interdependent Relationships in Ecosystems
S.10.LS.11. Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.
Vertebrates IIA vertebrate is an animal with a spinal cord surrounded by cartilage or bone. The vertebrates are also characterized by a muscular system consisting primarily of bilaterally paired masses and a central nervous system partly enclosed within the backbone. The 7 classes of vertebrates are: Class Aves, Class Reptilia, Class Agnatha, Class Amphibia, Class Mammalia, Class Osteichthyes, Class Chondrichthyes. Read more...iWorksheets :3Vocabulary :3
S.10.LS.12. Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.
Ecology IMatch each ecology term to its definition like Energy pyramid, Decomposer, Carnivore, Ecosystem, Owl pellet, Omnivore and many more. Which human activity would be more likely to have a positive/negative impact on the environment? Which factor determines the type of terrestrial plants that grow in an area? Which energy transfer is least likely to be found in nature? Read more...iWorksheets :4Vocabulary :2
Inheritance and Variation of Traits
S.10.LS.16. Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.
Cell ReproductionThe process where one cell forms two identical daughter cells. Mitosis is how somatic—or non-reproductive cells—divide. Meiosis is cell division that creates sex cells, like female egg cells or male sperm cells. Meiosis has two cycles of cell division, called Meiosis I and Meiosis II. Read more...iWorksheets :4
S.10.LS.17. Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.
Cell ReproductionThe process where one cell forms two identical daughter cells. Mitosis is how somatic—or non-reproductive cells—divide. Meiosis is cell division that creates sex cells, like female egg cells or male sperm cells. Meiosis has two cycles of cell division, called Meiosis I and Meiosis II. Read more...iWorksheets :4
Genetics and heredity IHow many chromosomes would normally be contained in a gamete? Match each Genetics and heredity term to its definition like Genetic code, Crossing-over, Fertilization, Codon, Dominant allele, Ribosomes, Sex cells, Punnett square, Prophase II. Read more...iWorksheets :4Vocabulary :7
Genetics and heredity IIBy whom were first described the principles of dominance, segregation, and independent assortment? What did Gregor Mendel discover using the results of his experiments with plant crosses? Match each Genetics and heredity term to its definition like Splindle fibers, Telophase, Trait, Transcription, Mutation, Phenotype. Read more...iWorksheets :3Vocabulary :7
S.10.LS.18. Make and defend a claim based on evidence that inheritable genetic variations may result from: (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.
Cell ReproductionThe process where one cell forms two identical daughter cells. Mitosis is how somatic—or non-reproductive cells—divide. Meiosis is cell division that creates sex cells, like female egg cells or male sperm cells. Meiosis has two cycles of cell division, called Meiosis I and Meiosis II. Read more...iWorksheets :4
Nucleic acids and protein synthesisThe term nucleic acid is the name for DNA and RNA. They are composed of nucleotides. DNA molecules are double-stranded and RNA molecules are single-stranded. To initiate the process of information transfer, one strand of the double-stranded DNA chain serves as a template for the synthesis of a single strand of RNA that is complementary to the DNA strand. Read more...iWorksheets :4Vocabulary :3
S.10.LS.19. Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.
Genetics and heredity IHow many chromosomes would normally be contained in a gamete? Match each Genetics and heredity term to its definition like Genetic code, Crossing-over, Fertilization, Codon, Dominant allele, Ribosomes, Sex cells, Punnett square, Prophase II. Read more...iWorksheets :4Vocabulary :7
Natural Selection and Evolution
S.10.LS.21. Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.
Evolution and classificationCategorize organisms using a hierarchical classification system based on similarities and differences. Evolutionary theory is a scientific explanation for the unity and diversity of life. Analyze the effects of evolutionary mechanisms, including genetic drift, gene flow, mutation and recombination. Read more...iWorksheets :3
S.10.LS.23. Construct an explanation based on evidence for how natural selection leads to adaptation of populations.
Evolution and classificationCategorize organisms using a hierarchical classification system based on similarities and differences. Evolutionary theory is a scientific explanation for the unity and diversity of life. Analyze the effects of evolutionary mechanisms, including genetic drift, gene flow, mutation and recombination. Read more...iWorksheets :3
WV.S.HS.PS. Physical Science
S.HS.PS. Physical Science Content
Energy
S.HS.PS.16. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).
S.HS.P.13. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).
S.HS.ENV.2. Explain how the chemical components of biological and physical processes fit in the overall process of biogeochemical cycling such as photosynthesis, respiration, nitrogen fixation, or decomposition.
S.HS.ENV.14. Identify natural and anthropogenic sources of primary, secondary, and indoor air pollutants and the resulting environmental and health effects.
S.HS.ENV.16. Identify causes for the thinning of the ozone layer and evaluate the effectiveness of the Montreal Protocol for reducing ozone depletion.
S.HS.ENV.17. Debate climate change as it relates to natural forces, greenhouse gases, and human changes in atmospheric concentrations of greenhouse gases, and relevant laws and treaties.
S.HS.ENV.18. Identify sources, uses, quality, conservation, and global distribution of water.
S.9-10.L.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 9–10 texts and topics.
Chemical ReactionsChemical reaction is a process in which one or more substances, are converted to one or more different products. Synthesis - a chemical reaction where two or more elements or compounds combine to form a single product. Single Replacement Reaction - a chemical reaction where a more active element replaces a less active element in a compound. Decomposition - a chemical reaction in which a compound is broken down into simpler compounds or elements. Read more...iWorksheets :6Vocabulary :3
Reading- Integration of Knowledge and Ideas
S.9-10.L.7. Translate quantitative or technical information expressed in words in a text into visual form (e.g., a table or chart) and translate information expressed visually or mathematically (e.g., in an equation) into words.
Chemical ReactionsChemical reaction is a process in which one or more substances, are converted to one or more different products. Synthesis - a chemical reaction where two or more elements or compounds combine to form a single product. Single Replacement Reaction - a chemical reaction where a more active element replaces a less active element in a compound. Decomposition - a chemical reaction in which a compound is broken down into simpler compounds or elements. Read more...iWorksheets :6Vocabulary :3
WV.S.HS.PS. Physical Science
S.HS.PS. Physical Science Content
Chemical Reactions
S.HS.PS.5. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
Chemical ReactionsChemical reaction is a process in which one or more substances, are converted to one or more different products. Synthesis - a chemical reaction where two or more elements or compounds combine to form a single product. Single Replacement Reaction - a chemical reaction where a more active element replaces a less active element in a compound. Decomposition - a chemical reaction in which a compound is broken down into simpler compounds or elements. Read more...iWorksheets :6Vocabulary :3
S.HS.PS.7. Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.
Chemical ReactionsChemical reaction is a process in which one or more substances, are converted to one or more different products. Synthesis - a chemical reaction where two or more elements or compounds combine to form a single product. Single Replacement Reaction - a chemical reaction where a more active element replaces a less active element in a compound. Decomposition - a chemical reaction in which a compound is broken down into simpler compounds or elements. Read more...iWorksheets :6Vocabulary :3
Energy
S.HS.PS.16. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).
Chemical ReactionsChemical reaction is a process in which one or more substances, are converted to one or more different products. Synthesis - a chemical reaction where two or more elements or compounds combine to form a single product. Single Replacement Reaction - a chemical reaction where a more active element replaces a less active element in a compound. Decomposition - a chemical reaction in which a compound is broken down into simpler compounds or elements. Read more...iWorksheets :6Vocabulary :3
S.HS.C.9. Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
Chemical ReactionsChemical reaction is a process in which one or more substances, are converted to one or more different products. Synthesis - a chemical reaction where two or more elements or compounds combine to form a single product. Single Replacement Reaction - a chemical reaction where a more active element replaces a less active element in a compound. Decomposition - a chemical reaction in which a compound is broken down into simpler compounds or elements. Read more...iWorksheets :6Vocabulary :3
S.HS.C.10. Predict the products, write and classify balanced chemical reactions including single replacement, double replacement, composition, decomposition, combustion and neutralization reactions.
Chemical ReactionsChemical reaction is a process in which one or more substances, are converted to one or more different products. Synthesis - a chemical reaction where two or more elements or compounds combine to form a single product. Single Replacement Reaction - a chemical reaction where a more active element replaces a less active element in a compound. Decomposition - a chemical reaction in which a compound is broken down into simpler compounds or elements. Read more...iWorksheets :6Vocabulary :3
S.HS.C.16. Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.
Chemical ReactionsChemical reaction is a process in which one or more substances, are converted to one or more different products. Synthesis - a chemical reaction where two or more elements or compounds combine to form a single product. Single Replacement Reaction - a chemical reaction where a more active element replaces a less active element in a compound. Decomposition - a chemical reaction in which a compound is broken down into simpler compounds or elements. Read more...iWorksheets :6Vocabulary :3
S.HS.C.21. Perform the following “mole” calculations showing answers rounded to the correct number of significant figures:
S.HS.P.13. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).
Chemical ReactionsChemical reaction is a process in which one or more substances, are converted to one or more different products. Synthesis - a chemical reaction where two or more elements or compounds combine to form a single product. Single Replacement Reaction - a chemical reaction where a more active element replaces a less active element in a compound. Decomposition - a chemical reaction in which a compound is broken down into simpler compounds or elements. Read more...iWorksheets :6Vocabulary :3
S.HS.ENV.2. Explain how the chemical components of biological and physical processes fit in the overall process of biogeochemical cycling such as photosynthesis, respiration, nitrogen fixation, or decomposition.
S.HS.ENV.14. Identify natural and anthropogenic sources of primary, secondary, and indoor air pollutants and the resulting environmental and health effects.
S.HS.ENV.16. Identify causes for the thinning of the ozone layer and evaluate the effectiveness of the Montreal Protocol for reducing ozone depletion.
S.HS.ENV.17. Debate climate change as it relates to natural forces, greenhouse gases, and human changes in atmospheric concentrations of greenhouse gases, and relevant laws and treaties.
S.HS.ENV.18. Identify sources, uses, quality, conservation, and global distribution of water.
S.11-12.L.4. Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11–12 texts and topics.
Chemical ReactionsChemical reaction is a process in which one or more substances, are converted to one or more different products. Synthesis - a chemical reaction where two or more elements or compounds combine to form a single product. Single Replacement Reaction - a chemical reaction where a more active element replaces a less active element in a compound. Decomposition - a chemical reaction in which a compound is broken down into simpler compounds or elements. Read more...iWorksheets :6Vocabulary :3
S.HS.PS.16. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).
S.HS.P.13. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).
S.HS.ENV.2. Explain how the chemical components of biological and physical processes fit in the overall process of biogeochemical cycling such as photosynthesis, respiration, nitrogen fixation, or decomposition.
S.HS.ENV.14. Identify natural and anthropogenic sources of primary, secondary, and indoor air pollutants and the resulting environmental and health effects.
S.HS.ENV.16. Identify causes for the thinning of the ozone layer and evaluate the effectiveness of the Montreal Protocol for reducing ozone depletion.
S.HS.ENV.17. Debate climate change as it relates to natural forces, greenhouse gases, and human changes in atmospheric concentrations of greenhouse gases, and relevant laws and treaties.
S.HS.ENV.18. Identify sources, uses, quality, conservation, and global distribution of water.